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Reconstructing whole-body motions using only a low-dimensional input reduces the cost
of and efforts for performance capture significantly, and yet remains a challenging prob-
lem. We introduce a novel technique that synthesizes whole-body motion using the two
wrist trajectories. Given the wrist trajectories, we first determine the optimal ankle trajec-
tories from a large number of candidate ankle paths obtained from example poses in the
motion database. The optimal trajectory is efficiently achieved by solving for the shortest
path problem in a directed acyclic graph. Next, we use both the wrist and ankle trajectories
as the low-dimensional control signals to achieve the whole-body pose at each time step.
We show that our method can reconstruct various whole-body motions that can be recog-
nized by arm motions, such as walking, stepping, and in-place upper-body motions. Com-
parisons with ground truth motions and with other methods are provided.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Motion capture technologies are widely used in the
computer gaming and movie industries because they allow
for fast generation of realistic character animation as com-
pared with the conventional key frame-based procedures.
To make the motion capture-based animation processes
more affordable and easier, researchers have put forth var-
ious efforts, ranging from the development of capturing
devices [1–4] to editing techniques for captured signals
[5–7].

To reduce the cost and clutter of attaching a number of
sensors or markers to the human body, researchers have
attempted to capture whole-body motion using only low-
dimensional signals acquired from a sparse set of sensors
and markers attached to end-effectors, such as hands and
feet [8–10]. This approach aims to synthesize whole-body
poses such that the non-captured parts are appropriately
posed to realize the poses of the captured body parts. This
approach is referred to as performance (or action) capture in
contrast with the motion capture that aims to capture the
exact configurations of every segment of a human body.

Obviously, the lower the dimension of captured signals,
the harder it is to synthesize human motion. To tackle the
problem, Chai and Hodgins [8] collect K-nearest poses
from the pose database given the positions of six to nine
markers attached to the end effectors and pelvis, and con-
struct locally linear human pose space to determine a nat-
ural whole-body motion that satisfies the low-dimensional
control signals. Liu et al. [11] synthesize whole-body mo-
tion with a dynamic motion model that estimates the cur-
rent pose from the previously synthesized poses. Given the
control sequences acquired from four accelerometers at-
tached to the hands and feet, Tautges et al. [10] find pose
candidates with higher temporal coherency using the no-
vel Online Lazy Neighborhood Graph and synthesize
whole-body motion from the noise-ridden accelerometer
data.

Using a smaller number of sensors makes the problem
even more challenging, especially if the sensory data for
some end-effectors are unavailable. This paper presents a
novel data-driven method to synthesize whole-body
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1 Finding a shortest path in a DAG is O(V + E) where V = LK is the number
of vertices and E = LK2 is the number of edges.
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animation from the trajectories of only two wrist positions.
Because other body parts, such as the legs, can move more
or less independently from the arms, it may seem an infea-
sible attempt to synthesize whole-body motion just from
the two wrist positions, and apparently this approach can-
not capture the whole range of human movement. How-
ever, a large portion of human motions (e.g., in-place
upper-body motion, locomotion, jogging, jumping, etc.)
can be reasonably estimated only from arm motions, and
we seek to capture these motions. In fact, in many human
activities, the hands have the utmost functional and
semantic importance among all the human body parts,
and the lower body only assists the hands to reach the tar-
get points. Therefore, our goal is to reconstruct natural
whole-body motions that follow the input wrist trajecto-
ries, rather than accurately capturing whole-body
movements.

Input to our method is the three-dimensional trajecto-
ries of two wrist points. These trajectories can be measured
by externally installed stereo vision sensors, or by the cam-
eras worn by the performer [4]. In our experiments, we ac-
quire the input wrist trajectories by calculating the
position of virtual markers attached to the wrist points in
the test set of motion capture data and subsequently add-
ing Gaussian noise to model the noise characteristics of
real measurement data.

The advancement of tracking technologies has signifi-
cantly improved the accuracy and computational load for
estimating the cameras position and orientation [13,14].
Along with the wide dissemination of mobile devices
equipped with vision and inertial sensors, our method
can pave the way for enabling general public to capture
their motions just by holding two general-purpose mobile
devices in their hands, especially in outdoor environments
where externally installed motion capture devices have
limitations in capture volume. Additionally, our technique
can be employed for existing motion capture devices to
reconstruct whole-body motions when the lower-body is
occluded by obstacles for a long duration.

Using the control signals of both the hands and feet,
existing methods [8,10] show remarkable performances
in generating natural-looking motions. However, these
methods cannot be directly applied to the cases where only
hand motions are used as the input. Because the correla-
tion between hand and foot motions is rather low (espe-
cially if observed during a short time period), there are
infinitely many foot configurations that can be associated
with an input hand pose. Therefore, previous methods that
determine optimal body motions only in terms of motion
priors and smoothness may generate unnatural motions
such as a foot skating on the ground or both feet floating
in the air. This artifact should be addressed by taking into
consideration the constraints on foot motions. Namely, the
foot should not slide on the ground, and at least one foot
must be in contact with the ground unless a jumping mo-
tion is exhibited. Additionally, the time interval for synthe-
sizing motion should be long enough (at least longer than a
single walking step) to achieve suitably correlated motions
of the arms and the legs.

One approach to solving this problem is to add some
naturalness constraints on the foot in the optimization
process. However, solving such a spatial–temporal optimi-
zation problem to create a long duration of whole-body
motions typically requires heavy computation and is not
suitable for interactive applications.

Instead, we develop a novel two-step approach. First,
using wrist trajectories acquired in a reasonably long dura-
tion, we determine only the associated optimal ankle tra-
jectories by referring to motions in the database. Next,
we use the acquired ankle trajectories, along with the wrist
trajectories, as the low-dimensional control signals to
achieve the optimal whole-body pose at each time step
based on the technique proposed by Chai and Hodgins
[8]. The advantages of this two-step approach are that (1)
spatial–temporal optimization in a long time interval can
be performed fast because the dimension of the unknown
(i.e., the ankle trajectories) is low and (2) we can use the
existing, highly-efficient methods [8,10] for synthesizing
whole-body motion using the four control inputs. Fig. 1
shows the overview of our method. Given the captured
wrist trajectories (Fig. 1(a)), the suitable ankle trajectories
are estimated (Fig. 1(b)), and then the whole body motion
is synthesized (Fig. 1(c) and (d)).

The key technical contribution of the proposed method
is the procedure used to find the optimal ankle trajectories.
We formulate the optimization process as a path-finding
problem in a graph. At every time step t(t = 1, . . . ,L), we
collect K nearest poses from the database using the wrist
points and identify the K candidate ankle positions corre-
sponding to the poses. Next, we construct a directed acy-
clic graph (DAG) G in which each node
nt

j ðt ¼ 1; . . . ; L; j ¼ 1 . . . KÞ represents the positions of the
two ankles and edges ðnt�1

j ;nt
kÞ connect all nodes at time

t � 1 to the nodes at time t (Fig. 6). The cost of an edge
nt�1

j ;nt
k

� �
is determined to represent the likeliness of the

transition from ankle points nt�1
j to nt

k, and to penalize foot
skating. Because of the structure of the DAG, the optimiza-
tion is performed quite efficiently in time complexity
O(LK2).1 The ankle trajectories are further smoothed and
used for the control input to find whole-body motion.

To complete the whole-body pose reconstruction, we
follow the method of [8], with some key details added to
reconstruct whole-body poses with only wrist information.
Specifically, we do not only estimate joint angles, but also
the optimal position and orientation of the pelvis, thereby
allowing for natural pelvis movement without acquiring
the sensory data about the pelvis. Previous methods either
directly captured pelvis motion [8] or used the weighted
average of pelvis poses from the motion database [10].

We show that our method can capture various perfor-
mances, such as walking, sharp turns, or jumping as well
as in-place upper-body motions. Comparisons are per-
formed against the ground truth data and other related
methods to verify the effectiveness of our approach.

The remainder of the paper proceeds as follows: after
reviewing related work in Section 2, we present the over-
view of the proposed method in Section 3. Section 4 ex-
plains the preprocessing step, and Sections 5 and 6



Fig. 1. Given the input trajectories of the wrist points (a), our method first estimates the ankle trajectories (b), and then synthesizes the whole-body motion
satisfying both the wrist and ankle trajectories (c and d).
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present the detailed procedures of our framework. After
reporting the experiments in Section 7, we discuss the lim-
itations and future work in Section 8. Section 9 concludes
the paper.
2. Related work

Creating natural-looking animation of a character mod-
el with high degrees-of-freedom using low-dimensional
input is a central problem in computer animation. Data-
driven methods address this problem by using pre-re-
corded motion databases as motion prior [15–19]. A nave
approach of searching the database for a sequence of
best-matching motion clips and blending them is straight-
forward, but cannot satisfy the various constraints because
of the limited size of the motion database. Instead,
researchers have developed various techniques for creating
new motions by interpolating and rearranging motion clips
or by performing statistical modeling of poses or motions
[20–23].

By predefining the existing natural transitions among
the motion clips in the database using a graph, motion
graph-based methods can create new, natural-looking per-
mutations of motion clips. This approach efficiently finds
the sub-optimal motion sequences to satisfy the imposed
constraints, such as walking directions, by solving the opti-
mization problem as a discrete path-finding problem
[17,6,24]. However, motion graphs cannot create new
poses that are not in the database; thus they cannot satisfy
continuous, fine-grained constraints such as the hand and
foot trajectories given in the performance capture.

In contrast, one can create a new motion that satisfies
continuous constraints by interpolating motion clips in
the database [5,25,26]. Additionally, by augmenting the
motion graph with the motion interpolation technique
[21], one can create a long sequence of motions that satisfy
both the continuous (e.g., target hand trajectories) and dis-
crete (e.g., target footprints) constraints. To this end, Zhao
and Safonova [27] developed a method to increase good
connectivity and transitions in the motion graph. However,
non-trivial preprocessing for the motion clips, such as time
warping, is required to interpolate the motions without
creating visual artifacts.
Researchers have put steady efforts into building princi-
pled approaches to synthesizing natural human motions
via statistical modeling of the human pose space. To model
the high-dimensional, highly nonlinear human pose space,
various methods have been applied, such as the mixture of
Local Linear Models [28], Linear Dynamic System [29], and
Gaussian Process-based models [30]. Chai and Hodgins [8]
constructed locally linear human pose spaces to synthesize
the natural human pose that works with the low-dimen-
sional control inputs. Liu et al. [11] extended the approach
to construct locally linear dynamic motion model online by
finding a set of similar motion clips from the database and
estimating current pose under the maximum a posteriori
(MAP) framework. Krüger et al. [12] developed a novel lazy
neighborhood graph for fast local and global similarity
searching in a large motion capture database, and Tautges
et al. [10] further improved the method to define the on-
line lazy neighborhood graph that can find poses with
higher temporal coherency from the database quite effi-
ciently to construct locally linear pose spaces online. They
showed that performance capture is somewhat possible
even with an extremely low number (less than four) of
sensors, but such performance is attainable only when
the size of the database is small enough to ensure the dis-
criminative ability of the sensor input.

Our method is mostly related to the work of Chai and
Hodgins [8]. Our goal is to generate natural-looking
whole-body motions using only the input signals from
the two wrist trajectories. Because the dimension of input
signal is very low, one cannot achieve the plausible mo-
tions by directly applying the methods in [8,10], which
may create infeasible lower-body motions, such as foot
skating, due to the lack of input signals involving the feet.
To solve this problem, we construct feasible ankle trajecto-
ries for the input wrist trajectories and use both the wrist
and ankle trajectories as the low-dimensional input to con-
struct whole-body motions using the method of [8].

Recently the Gaussian process (GP) and the related
methods are widely studied as a powerful means to reduce
the high dimensional pose spaces to low-dimensional la-
tent spaces [7,32,33,23,31]. The methods have several out-
standing advantages, such as natural pose interpolation
and less parameter-tuning. Grochow et al. [7] developed
an inverse kinematics procedure that maintains the style
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of the example motions by using the GP latent variable
model (GPLVM) [34]. Wang et al. [32] developed the GP
dynamical models to model the temporal structure of mo-
tions. Levine et al. [31] proposed a method to generate
interactive character animation that satisfies the user-
specified inputs by precomputing the optimal control pol-
icies in the latent space of the GPLVM. GP-based methods
are flexible enough to satisfy fine-grained, continuous con-
straints, yet they are limited to small-sized databases be-
cause of the cost of computation and training.

Among other interesting work that shares the goal of
our method, Min et al. [35] developed a low-dimensional
motion model tailored to support the geometric and timing
variations of a motion and showed that the model can syn-
thesize natural motions, satisfying both continuous and
discrete constraints. In their work, separate motion models
need to be constructed per each action category, which
hinders continuous reconstruction of heterogeneous ac-
tions. The technique has been further improved to incorpo-
rate heterogeneous behaviors by concatenating distinctive
motion models via graph walks and probabilistic sampling
[36]. Slyper and Hodgins [2] developed a performance cap-
ture system that finds the best matching upper-body mo-
tion clip from the database using the input signals of five
accelerometers sewn in a shirt. Yin and Pai [38] showed
that a certain range of whole-body motion can be esti-
mated just from the foot pressure distribution image. Heck
et al. [37] presented a method to combine upper-body mo-
tion data from a motion sequence with the lower-body
movement of another motion sequence in a natural man-
ner. The latter two methods exploit the correlation be-
tween upper- and lower-body motions. We also use this
feature but explore a different direction by estimating
the feet movement from the input wrist motions.

3. Overview

As shown in Fig. 2, our performance capture framework
consists of two major steps:

1. Ankle trajectory generation
From the input trajectories of two wrist positions, we
first estimate the trajectories for the ankles. Let
xt 2 R6 denote the thee-dimensional positions of the
two wrist points, stacked to form a six-dimensional
Fig. 2. Overview of the perform
vector, at time t. The position of two ankle points at
time t is similarly denoted as yt 2 R6. Next, the input
wrist trajectories are represented as ½~x1; . . . ; ~xL�, where
the tilde sign ‘‘~�’’ denotes the input control signals.
(a) Making ankle point clouds

At each time step t = 1, . . . , L, K1 number of example
poses, of which wrist positions are the closest to the
given input ~xt , are selected from the database. Then,
the ankle positions yt

kjk ¼ 1; . . . ;K1
� �

corresponding
to the selected poses form the ankle point clouds at
each time step.

(b) Generating ankle trajectories
We construct a directed graph composed of all the
ankle point clouds created throughout the time
window (1 6 t 6 L), and determine the optimal
ankle trajectories ½~y1; . . . ; ~yL� by finding the short-
est path in the graph.

2. Whole body motion generation
At this step, we use both the wrist and ankle trajectories
as the input control signals ½ð~x; ~yÞ1; . . . ; ð~x; ~yÞL� to syn-
thesize the whole-body pose at each time step based
on the method of [8].
(a) Modeling a locally linear pose space

First, we construct the local linear model of the
human pose using the K2 closest poses {mk-

jk = 1, . . . ,K2} corresponding to the control signal
ð~x; ~yÞt .

(b) Generating whole-body poses
The local linear model is used to synthesize the nat-
ural-looking whole-body pose (i.e., the position and
orientation of the pelvis as well as the joint angles)
that aligns with the control signal.

The generated motion is finally post-processed to re-
move possible foot-skating artifact and improve
smoothness.

4. Preprocessing the motion database

Given a motion database, we pre-compute several fea-
tures for each pose in the database to perform the capture
efficiently. The features are measured with respect to the
reference frame defined for each pose based on the position
of the wrists (Fig. 3). The reference frame is defined such
that the x and z-coordinates are in the middle of the two
ance capture framework.



Fig. 3. The reference frame of a pose is determined from the wrist
positions projected to the ground.
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wrist points and the y-coordinate is at ground height. The
orientation of the reference frame is aligned such that its x-
axis is parallel to the line segment made by the two
ground-projected points of the wrists, and the y-axis is
same as the up-vector. The motivation for choosing the
particular reference frame is that we want to find the K-
nearest poses from the database with respect to the wrist
positions, as will be explained in the next section.

Specifically, we pre-compute the following features: the
axial tilt angle (angle between the y-axis of the reference
frame and that of the pelvis) h and the height h of the pelvis
and the position of the wrists and ankles ðx̂; ŷÞ, as well as
their velocities ð _̂x; _̂yÞ; all are expressed with respect to
the reference frame. The hat sign ‘‘̂�’’ denotes that the quan-
tity is expressed in the reference frame. The velocities of
the wrists and ankles are calculated by the numerical dif-
ferentiation between the consecutive poses with respect
to the world frame, and subsequently transformed to the
reference frame. The height and tilt angle of the pelvis will
be used to model the local linear pose space, along with the
joint angles. The positions and velocities of the wrists and
ankles are used to find close poses to the input signals.
5. Ankle trajectory generation

The challenge of reconstructing a whole-body pose
from only wrist points is due to the fact that there is a wide
variety of poses that would satisfy the given wrist points at
a certain time step; thus, it is quite difficult to find tempo-
rally coherent and natural-looking motions if the poses are
generated on a per-frame basis. However, if the wrist tra-
jectories are examined within a sufficiently long time
interval, a reasonable whole-body motion that matches
the input wrist trajectories can be found. For example, if
the wrist points move continuously within a certain range
in space, they can be recognized as an in-place upper-body
motion. If the wrist points translate over a long distance,
they can be interpreted as locomotion.

Therefore, we first aim to reconstruct the plausible an-
kle trajectories by examining the wrist trajectories during
a sufficiently long time interval. Then both the wrist and
ankle trajectories will be used to reconstruct the whole-
body motion in the next step.

The generation of the ankle trajectories is illustrated in
Fig. 4. At a certain instant, one can find a subset of poses
from a motion database that have similar wrist positions
to the given wrist positions, and subsequently collect the
set of candidate ankle points for the left and right feet from
the poses. Typically the candidate ankle points are located
close to each other, forming a cloud (hence, dubbed ankle
point cloud in this paper). As these ankle point clouds are
found at every point in time, the temporal evolution of
the shape of the point clouds is acquired. We assume that
feasible ankle trajectories can be found from the moving
point clouds, and determine the optimal ankle points at
time t from the point clouds at that particular time step.

We formulate the problem of finding the optimal ankle
trajectories into a path finding problem in a graph. The
node of the graph represents a pair of candidate ankle
points. If we consider the time interval of t = 1, . . . ,L and
find K pairs of candidate ankle points at each time frame,
a total of LK nodes are obtained. From our assumption, a
node at time t � 1 can only be connected to the nodes at
t, hence the graph is constructed as a DAG. We find the
optimal ankle trajectories by finding the shortest path in
a DAG, which can be performed very efficiently.

5.1. Preprocessing

Because the motion data measured by capture devices
contain noises, we first use a smoothing filter to reduce jit-
tering of the measured data. In our experiment, we employ
a simple exponential smoothing [41] to calculate the posi-
tion ~xt of wrist points at time t:

~xt ¼ sxt þ ð1� sÞ~xt�1; ð1Þ

where xt denotes the wrist positions at time t measured by
capture devices, and s is a smoothing weight. We set s = 0.5
in our experiments.

5.2. Ankle point clouds

At each time step, ankle point clouds are created by the
K1 closest poses pk(k = 1, . . . ,K1) found from the motion
database using a pair of wrist points. Specifically, given
the wrist position and velocity ð~x; ~_xÞ

t
at time t, we use

the following metric to find the K1 closest poses:

ak~xt � xnk2 þ ð1� aÞk~_xt � _xnk2 ð2Þ

where xn and _xn denote the wrist positions and velocities of
the pose pn(n = 1, . . . ,N), where N is the total number of
poses in the database, aligned to the input wrist points
(Fig. 5(a)). The alignment is performed by transforming
the reference frame of pn to coincide with a reference
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Fig. 5. Alignment of input and database wrist positions (left), and generation of ankle point clouds (right).
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frame defined by ~xt . ~_xt is calculated as the numerical differ-
entiation between adjacent points. In practice, rather than
aligning all the example poses to the given control input,
we obtain an equivalent result for Eq. (2) more quickly
by calculating the local coordinates of the input wrist
points and velocities with respect to their reference frame
and comparing them with x̂n and _̂xn.

The first term in Eq. (2) checks how the position of the
input control signals match the aligned position of the
example pose in the database, and the second term com-
pares the similarity of the velocities. The latter term differ-
entiates between poses with similar wrist positions but
different wrist velocities and helps to distinguish between
the different behaviors when finding the example ankle
points. For example, considering the static standing pose,
the velocities of the input wrists are low, and in this case,
the ankle points with high velocities, which were captured
from walking or running motions, are less likely to be se-
lected because their corresponding wrist motions will have
high velocities.

After collecting K1 number of poses that are closest to
the input wrist points in terms of Eq. (2), we construct
the ankle point clouds fyt

kjk ¼ 1; . . . ;K1g at time
t = 1, . . . ,L (Fig. 5(b)). In our experiments, a and K1 are set
to 0.8 and 1000, respectively.
5.3. Optimal ankle trajectories

Using the ankle point clouds at time t = 1, . . . ,L, we find
the optimal ankle trajectories from the example points in
the clouds. To this end, we first construct a DAG, of which
the nodes are the ankle point clouds fyt

kjt ¼
1; . . . ; L; k ¼ 1; . . . ;K1g. Edges are created such that all
nodes at time t � 1 are connected to all nodes at time t,
i.e., ðyt�1

i ; yt
j Þ 2 E;8i; j; t, where E denotes the set of edges

in the graph (Fig. 6(a)).
To determine the optimal ankle trajectory by finding

the shortest path in the graph, we need to define suitable
costs for each edge in the graph. For this, we consider
two terms: motion prior and sliding terms. By forming the
ankle point clouds, we have already collected the likely
positions of the ankles using the input wrist points. What
we need to consider next is how likely a path (i.e., an ankle
trajectory) in a DAG is, which is what motion prior term
deals with. Specifically, we define the cost rt�1

j;k of an edge
yt�1

j ; yt
k

� �
for the motion prior term as follows:

rt�1
j;k ¼ kyt�1

j þ Dt _yt�1
j � yt

kk
2
; ð3Þ

where Dt is the duration of a time step and yt�1
j þ Dt _yt�1

j

represents the position that yt�1
j would likely to evolve at



Fig. 6. The optimal ankle trajectories are found by searching the shortest path in a directed acyclic graph.
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the next time step. Hence, rt�1
j;k represents the difference

between the likely position of yt�1
j at time t and yt

k. The
smaller rt�1

j;k is, the more likely that yt�1
j will evolve to yt

k.
Another important criterion is whether the ankle posi-

tion is physically plausible. The sliding term penalizes
foot-sliding movement using the following cost:

dt�1
j;k ¼ dl;t�1

j;k þ dr;t�1
j;k ; ð4Þ

dl;t�1
j;k ¼ exp wkyl;t�1

j � yl;t
k k

2
� �

; if sliding yl;t�1
j ; yl;t

k

� �
¼ true

0; otherwise;

(

ð5Þ
where yl
j denotes the left ankle part in yj. The cost grows

exponentially as the distance between the ankle points in-
creases. We determine sliding yl

j; y
l
k

� �
to be true if (1) the

distance between yl
j and yl

k exceeds 2 cm and (2) the height
difference of yl

j and yl
k is less than 0.14 cm. dr;t�1

j;k is defined
similarly to dl;t�1

j;k . Note that we do not check the distance
between the ankles and the ground to detect the sliding
because we also want to prevent the artifact that the feet
slide in the air.

Overall, the cost wt�1
j;k of an edge yt�1

j ; yt
k

� �
is determined

as the weighted sum of the two terms:

wt�1
j;k ¼ brt�1

j;k þ ð1� bÞdt�1
j;k ; ð6Þ
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where b controls the weight between rt�1
j;k and dt�1

j;k . We set
b = 0.5 in our experiments.

Finally, by finding the shortest path in the DAG, we
determine the optimal ankle trajectory ½~y1; . . . ; ~yL� that
minimizes the following objective function:

½~y1; . . . ; ~yL� ¼ arg minfyt ;16t6Lg

XL

i¼1

wt�1
j;k : ð7Þ

Algorithm 1 presents the pseudocode to find the opti-
mal ankle trajectories in the graph. Fig. 6(b) shows the re-
sult after all paths in the DAG have been evaluated. The
path of the minimum cost is chosen and the optimal nodes
are collected by back-tracing the path.

Algorithm 1. GenerateAnkleTrajectory (L; fyt
j jt ¼ 1; . . . ;

L; j ¼ 1; . . . ;K1g)
Left ankleRight ankle

Fig. 7. A character model used in our experiments.
Input: Trajectory length L, the set of aligned ankle
positions in motion capture database for L frames
fyt

j jt ¼ 1; . . . ; L; j ¼ 1; . . . ;K1g
Output: Two ankle positions as estimated control

signals ½~y1; . . . ; ~yL�
1: for all t = 1, . . . ,L � 1 do
2: for all j = 0, . . . ,K1 � 1 do
3: for all k = 0, . . . ,K1 � 1 do

4: rt�1
j;k ¼ kyt�1

j þ Dt _yt�1
j � yt

kk
2

5: dt�1
j;k ¼ 0

6: if sliding yl;t�1
j ; yl;t

k

� �
¼ true then

7: dt�1
j;k ¼ dt�1

j;k þ exp wkyl;t�1
j � yl;t

k k
2

� �
8: if sliding yr;t�1

j ; yr;t
k

� �
¼ true then

9: dt�1
j;k ¼ dt�1

j;k þ exp wkyr;t�1
j � yr;t

k k
2

� �
10: wj;k ¼ brt�1

j;k þ ð1� bÞdt�1
j;k

11: if nt
k:estimate > nt�1

j :estimateþwj;k then

12: nt
k:estimate ¼ nt�1

j :estimateþwj;k

13: nt
k:predecessor ¼ j

14: ½~y1; . . . ; ~yL� ¼ BackTraceDirectAcyclicGraphðÞ
15: return ½~y1; . . . ; ~yL�

The acquired trajectory is smoothed by the Gaussian fil-
ter and used as the control signal for reconstructing whole-
body motion in the next step.
5.3.1. Optimization in sub-intervals
Let us assume a real-time application that reconstructs

the performer’s motion in an interactive rate. As the wrist
positions are input to the system in real-time, we can add
K1 number of nodes to the DAG and update the costs of the
paths in the graph online (from line 1 to 12 in Algorithm 1).
However, since the optimal path can only be identified
after the costs of all the paths are finalized by back tracing
the path (line 13 in Algorithm 1), one should wait until the
end of performance before she can acquire the optimal
ankle trajectories.
Instead, in order to achieve results in an interactive rate,
we can choose to partition the graph into a set of intervals,
and find the optimal trajectories in each interval of the
graph. In other words, as a certain time interval L of wrist
points are gathered, we perform the optimization in that
interval, and wait for the next input wrist trajectories of
length L to construct the subsequent optimal ankle path.
This per-interval basis reconstruction creates sub-optimal
results, but our experiments show that the sub-optimal re-
sults are not significantly different from the globally opti-
mal path if the time interval L is long enough (Fig. 12).
This is because the optimal foot motion for the given wrist
positions at a certain time step can be identified in the suf-
ficiently long, yet local time interval.

To ensure the continuity of the optimal paths between
consecutive intervals, we enforce the last node of the opti-
mal path in the previous time interval s to be the first node
of the optimal path in the next interval s + 1, by removing
all the outgoing edges from the nodes at the initial bound-
ary of the interval s + 1 except for the optimal node
(Fig. 6(c)).
6. Motion generation

We reconstruct a whole-body pose for each time step;
first, by constructing the locally linear pose space and the
reduced pose vector, and second, by solving for the optimal
pose given the control input.
6.1. Local modeling of poses

We construct the local linear model with the example
poses collected with the control inputs. The overall process
is based on [8], yet some key modifications and



Fig. 8. Comparisons of ground truth ankle trajectories (left) with the estimated ones (right). Green and cyan curves represent the left ankle trajectories, and
blue and magenta curves represent the right ankle trajectories. See Fig. 14 for input wrist trajectories for the above results. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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improvements are made to include the pelvis pose in the
linear model.

Because of the ankle trajectories acquired in the previ-
ous step, we have four control signals with which we can
find pose examples from the database to learn the pose
space. A total of K2 example poses are collected from the
database with the following query metric:
a k~xt � xnk2 þ k~yt � ynk
2

� �
þ ð1� aÞ k~_xt � _xnk2 þ k~_yt � _ynk2

� �
: ð8Þ



Fig. 9. The shapes of the left ankle point clouds for a walking motion at
three different time frames. Only 500 points are visualized for clarity. The
red line segments represent the velocities of each point, and the thick red
line segment is the velocity of the node selected in the optimal path. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Note that xn; _xn; yn, and _yn are the quantities corre-
sponding to the pose aligned to the input wrist points in
the same manner shown in Fig. 5(a). Eq. (8) is similar to
Eq. (2), with the additional terms for the ankle inputs. a
is set to the same value as in Eq. (2).

Let us denote a pose with p = (z,q), where z = (zR,zP)2
SE(3) is the position zP and orientation zR of the pelvis,
and q 2 RD is the joint angles of D degrees of freedom
(D = 54 in our experiment). To construct the pose space,
we define the feature vector for a pose as
m ¼ ðh;h;qTÞT 2 R2þD, where h and h are the axial tilt angle
(the angle between the up-vectors of the world and the
pelvis) and height of the pelvis, respectively. Note that,
among the six degrees of freedom of the pelvis, we keep
only the height and the tilt angle because they are invari-
ant to the specific location and direction of the pose data
in the database.
To find the reduced linear space, principal component
analysis is used for the K2 number of example poses
fmt

njn ¼ 1; . . . ;K2g and a pose is represented using the
low-dimensional reduced vector wt:

m ¼ pt þ Utwt; ð9Þ

where pt is the mean vector of the K2 poses, Ut consists of
D0 number of principal components, and wt 2 RD0 is the re-
duced space vector for the pose. In our experiment, we
used the values of K2 = 200 and D0 = 6.

6.2. Motion synthesis

After constructing the linear pose space, we determine
the whole-body pose pt = (z,q)t at each time step
(1 6 t 6 L) by achieving the optimal values for the reduced
vector wt and the pose of the pelvis zt. This is achieved by
solving an optimization problem to minimize the cost
terms regarding the naturalness of the motion and satisfac-
tion of the control inputs. Each cost term is provided in
detail.

� The constraint terms
The terms enforce constraints due to the structure and
dependencies of the variables. First, zR must satisfy
the SO(3) structure. If represented with a unit quater-
nion, zR must satisfy (zR)TzR = 1. Also, the tilt angle h
and height h of the pelvis, defined by the reduced pose
vector w, should be in accordance with z, that is, h = hjz
and h = hjz, where hjz and hjz are the values computed
from z.
Combining the constraints above, we define the follow-
ing constraint terms:
Econst ¼ k zt
R

� �T zt
R � 1k2 þwhkht � hjztk2

þwhkht � hjztk2
: ð10Þ
We used the values wh = wh = 1 in our experiments.
� The prior term

Following [8], we enforce that the poses conform to the
normal distribution made by the K2 example poses, by
applying the prior term defined as:
Eprior ¼ ðmt � ptÞTðKtÞ�1ðmt � ptÞ; ð11Þ
where Kt is the covariance matrix of the K2 example poses
(see [8] for more details).
� The control term

The control term deals with the quality of satisfying the
control inputs:
Ectrl ¼ kxjwt ;zt � ~xtk2 þ kyjwt ;zt � ~ytk2
; ð12Þ
where xjw,z and yjw,z denote x and y, respectively, given w
and z, computed by a forward kinematics operation.
� The smoothness term

This term plays the role of increasing the smoothness of
the resulting motion. Assuming that movement with
constant velocity is the ideal case, i.e., qt � qt�1 = qt�1

� qt�2 for the joints and similarly for the pelvis, the
smoothness terms is defined as:



Fig. 10. The resulting ankle trajectories and the shape of point clouds at some moment when velocity metric in Eq. (2) is used (left) and when not (right).
Cyan and magenta curves represent left and right ankle trajectories, respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 11. The resulting ankle trajectories with different edge costs in the directed acyclic graph. The ground truth trajectory (walking to the left-sharp turn-
walking to the right) is shown in (a). Green and blue curves represent the left and right ankle trajectories, respectively. We test cost functions of (b) the
Euclidean distance between the nodes (c) prior term only (d) both the prior and sliding terms. The foot skating observed in (c) (in a red circle) is removed in
(d). Cyan and magenta curves are the left and right ankle trajectories, respectively. (For interpretation of the references to color in this figure legend, the
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Esmooth ¼ kzt � 2zt�1 þ zt�2k2 þ kqt � 2qt�1 þ qt�2k2: ð13Þ
The objective function is then defined as the weighted
sum of all terms:

arg minwt ;zt
Econst þwpriorEprior þwctrlEctrl

þwsmoothEsmooth: ð14Þ

reader is referred to the web version of this article.)
Eq. (14) is solved using the Levenberg–Marquardt algo-
rithm [40]. The initial values for the optimization parame-
ters wt and zt are set to the optimal values at t � 1 for
t P 2. At t = 1, the initial values are determined by the ini-
tially guessed pose, which is selected from the database to
be the closest to xt, and then properly aligned. In our exper-
iments, we set wprior = 1.0, wctrl = 0.8, and wsmooth = 0.2.



Fig. 12. The resulting ankle trajectories with different lengths of time intervals L for a circular walking motion. Cyan and magenta curves are the left and
right ankle trajectories, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 13. Comparison of the ground truth (left) and the estimated pelvis motion (right) for a walking motion.
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Fig. 14. Examples of the reconstructed motions. From the top, normal walking with swinging arms (#1), jumping twice (#2), jogging (#3), lateral stepping
(#4), walking with waving hands (#5), bending the upper body while standing (#6), and forward stepping followed by backward stepping (#7).
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Fig. 15. Different lower-body movements with similar arm motions are well distinguished in our method. Top two rows: greeting motions (#8 and #9).
Bottom two rows: hands are waving vertically (#10 and #11).
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6.3. Post-processing

In most cases, the obtained whole-body motion looks nat-
ural and follows the input wrist trajectories well. However, in
some cases, the motion contains slightly jittery movements
when the ankle trajectories are not smooth enough. In addi-
tion, the resulting motion may contain foot-skating espe-
cially during a challenging motion such as a sharp-turn.

Therefore, we perform the post-processing to reduce
the jittering and foot-skating artifacts. We first reduce
the foot-skating using the technique presented in [39].
After identifying the desired configuration of a foot in con-
tact with the ground, inverse kinematics is performed to
constrain the foot to the desired configuration. Next, we
apply the Gaussian filter in the joint space to improve
the smoothness of the motion.
7. Experiments

We performed various experiments to verify the valid-
ity and effectiveness of our method. The motion database
consists of a set of full body behaviors (a total of 49,709
frames running 28 min with 30 frames per seconds) such
as standing with upper body motions (15,137 frames), nor-
mal walking with swinging arms (9350 frames), walking
with other upper body motions (15,028 frames), running
(2655 frames), jumping (2011 frames), walking sideways
(2635 frames), bending the upper body (857 frames), and
backward stepping (2036 frames).

Test input trajectories of the wrist points are obtained
from separately captured motions doing the same behav-
iors in the motion database. We attach virtual markers to
the wrist points for the test set of motions and acquire
wrist trajectories using forward kinematics. Subsequently,
we add Gaussian noise with standard deviation of 0.5 cm
to the wrist trajectories to include the effect of the noises
in the experiments. The human model used in our experi-
ments has 17 joints, all of which are modeled as ball joints
(Fig. 7).

7.1. Ankle trajectory generation

Fig. 8 shows the ankle trajectories achieved by our
method for various input wrist trajectories including nor-
mal walking (with swinging arms), sideways walking, for-
ward bending, and jumping. The figure shows that our
method creates reasonably similar patterns to the ground
truth ankle trajectories.

Fig. 9 shows the shape of the ankle point clouds and the
velocities of each point (red line segments) at three differ-
ent time frames in a walking motion. The shape of the
point clouds varies significantly with each behavior and
for each phase of the wrist in the same behavior. Note that



Fig. 16. Average reconstruction errors in each example.
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the velocity vector ~_yt , marked as a thick red line segment,
of a node in the optimal ankle path (cyan) may not be col-

linear to the line segment ~yt ~ytþ1
���!

made between itself and
the next optimal node. This implies that the next optimal
node ~ytþ1 belongs to a pose that is not consecutive to that
of the current node in the database.

The velocity metric in Eq. (2) helps to find candidate an-
kle points with higher temporal correlation. Fig. 10 shows
the comparison between cases where the velocity metric is
used and those where it is not used. When the velocity
metric is used, the point cloud is more concentrated and
the resulting ankle trajectory is smoother.

Fig. 11 evaluates the different cost functions for the
edge in finding the optimal ankle trajectories in the graph.
If the distance between the nodes kyt�1

j � yt
kk

2
� �

is used for
the cost function wi�1

j;k , the shortest path in the sense of
Euclidean distance is achieved rather than a natural human
walking trajectory (Fig. 11(b)). If only the motion prior
term is used without the sliding term, foot skating is not
prevented during a sharp turn (Fig. 11(c) and (d) shows
the resulting ankle trajectory. Although not exactly same
as the ground truth data (Fig. 11(a)), a plausible ankle path
is achieved.

We investigated the effect of length of the time interval
on the optimization of the ankle trajectories. If the time
interval is too narrow (Fig. 12(a)), the quality of the result-
ing trajectory is rather poor because the correlation be-
tween the ankle and the wrist is not evident over a short
Fig. 17. Effect of noise levels o
time period. If the time interval is longer than 50 frames,
the results for the different window sizes are quite similar.

7.2. Pelvis estimation

In order to verify how accurately the pelvis position and
orientation are estimated, we compare them with the
ground truth values in the case of normal walking motion,
as shown in Fig. 13. The reconstructed pelvis motion has a
similar pattern as that of the ground truth, with a slight jit-
ter noticed in the orientation.

7.3. Whole body motion reconstruction

Fig. 14 shows the snapshots of the reconstructed mo-
tions for various input wrist trajectories. Walking (#1),
jumping (#2), running (#3), walking sideways (#4), walk-
ing with hand waving (#5), upper-body bending (#6), and
forward stepping followed by backward stepping (#7) mo-
tions are successfully reconstructed. The proposed algo-
rithm distinguishes between different lower-body
motions of similar arm movement patterns well due to
the velocity metric in Eq. (2). Fig. 15 shows such examples,
for greeting motions while standing (#8) and walking (#9),
and vertical hand-waving while standing (#10) and walk-
ing (#11).

Fig. 16 shows the accuracy of the reconstruction in
terms of the average root-mean-square (RMS) error per
n reconstruction errors.



Fig. 18. Examples that reconstructed motions (right) are significantly different from the ground truth input motions (left). (a) Input: hopping twice. Output:
jumping and hopping. (b) Input: walking with both arms stretched out. Output: walking with both arms raised comfortably. (c) Input: marching with wide
arm swing. Output: funny walking.
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joint angle for the test motions in Figs. 14 and 15. Static
motions (#4, #8, and #10) tend to show less error and a
jumping motion (#2) has the largest error. The graph con-
firms that reconstruction error is significantly reduced
(approximately 32% on average) when ankle trajectories
are estimated by our method.

Fig. 17 reports the effect of the noise level on the recon-
struction error. The average RMS error per joint angle
tends to increase more or less linearly with the standard
deviation of the Gaussian noise. Reconstructed motions
with varying noise levels are demonstrated in the accom-
panying video.

We compare the motions reconstructed by our method
with those by [8,10] (refer to the accompanying video). In
this experiment, we focus on the reconstruction quality of
the lower body because all the methods follow the input
wrist points well. Because each algorithm uses a different
method for estimating the pelvis motion, we remove the
effect of the pelvis estimation by applying the ground truth
pelvis motion to all methods. In addition, instead of accel-
erometer data, we use wrist positions as the input signal
for testing the method of [10].

As the method of [8] was developed for the case that
both ankle and wrist points are given as inputs, it produces
unnatural lower-body motions, such as foot-skating and
sudden movement change, if ankle trajectories are not
used. By improving the temporal coherency in constructing
the local linear model, Tautges et al. [10] reconstructs
whole-body motions successfully when the input wrist
motion is sufficiently discriminative to find a single behav-
ior. However, if two or more behaviors are found from one
input, the algorithm may create discrete changes to other
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behaviors, as shown in the accompanying video. Our meth-
od also finds multiple behaviors in this case, but the ankle
trajectory generation process avoids the discrete changes
in the behaviors.

The compute time for generating the optimal ankle tra-
jectories is approximately 100 miliseconds per frame with-
out using the fast algorithm to find K1 examples such as
kd-trees. The compute time for the whole-body recon-
struction given the ankle and wrist trajectories is approxi-
mately 350 miliseconds per frame.
8. Limitations and future work

Because we reconstruct a whole-body motion only from
the wrist trajectories, different behaviors of similar wrist
trajectory patterns cannot be distinguished. For example,
using the wrist trajectory for the hopping motion, a jump-
ing motion can be reconstructed, as shown in Fig. 18(a) and
(b) shows another example that a different style of motion
with similar wrist trajectories is reconstructed given an in-
put motion that is unlike any motions in the database.
Even in that case, our method still creates a feasible motion
due to the ankle trajectory generation algorithm.

Like any other data-driven methods that searches for
example poses from a motion database, the range of motions
created by our method depends on that of the database. An
apparent limitation is that the proposed method may not
reconstruct natural motions successfully if motions with
similar wrist patterns are not included in the database.
Fig. 18(c) shows such an example that a funny walking mo-
tion that has not been included in the motion database is syn-
thesized for input wrist trajectories of a marching motion.

In finding the optimal ankle trajectories, the sliding
term heuristically increases the naturalness of the motion
by penalizing foot skating, which casts a limitation that
our method cannot accurately reconstruct sliding motions.
It remains a challenge to develop a more principled meth-
od to quantify the naturalness of ankle trajectories so that
a wider range of input motions can be reconstructed with
enhanced realism.

There are a number of interesting venues for future
work. Because the ankle trajectory generation is performed
per some time interval, temporal delay would be some-
what unavoidable and it may impede the interactivity for
real-time applications. The delay could be mitigated to
some extent by adopting techniques for efficient computa-
tion, such as constructing a DAG online and parallelizing
processes for finding the shortest path in the DAG.

We plan to develop techniques for using two mobile de-
vices to track the three-dimensional trajectories of the
wrist points to capture the performance of a human. This
will greatly reduce the cost and effort required to capture
everyday activities.

Incorporating environmental information into the per-
formance capture process is another interesting aspect of
future work. By recognizing the geometric and semantic
information of an environment, such as the existence of
obstacles and the function of an object, it will be possible
to reconstruct whole-body motion more accurately with
a minimal number of sensors.
9. Conclusion

In this paper, we have presented a novel data-driven
method to synthesize whole-body animation using the tra-
jectories of two wrist positions. To this end, we developed
a technique to estimate the ankle trajectories from the in-
put wrist trajectories by solving for the shortest-path prob-
lem in a DAG. Requiring minimal attachment of sensors or
markers, the proposed method offers a convenient method
for capturing whole-body motion able to be recognized
from an arm movement. We demonstrated the validity
and effectiveness of the method by reconstructing various
motions, such as walking, jogging, jumping, and turning
sharply, as well as in-place upper-body motions.
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