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Abstract— A number of conceptually simple but behavior-
rich “inverted pendulum” humanoid models have greatly en-
hanced the understanding and analytical insight of humanoid
dynamics. However, these models do not incorporate the robot’s
angular momentum properties, a critical component of its
dynamics.

We introduce the Reaction Mass Pendulum (RMP) model,
a 3D generalization of the better-known reaction wheel pen-
dulum. The RMP model augments the existing models by
compactly capturing the robot’s centroidal momenta through
its composite rigid body (CRB) inertia. This model provides
additional analytical insights into legged robot dynamics, espe-
cially for motions involving dominant rotation, and leads to a
simpler class of control laws.

In this paper we show how a humanoid robot of general
geometry and dynamics can be mapped into its equivalent
RMP model. A movement is subsequently mapped to the time
evolution of the RMP. We also show how an “inertia shaping”
control law can be designed based on the RMP.

I. MOTIVATION

Next generation humanoids are expected to successfully co-
exist within human environments. This imposes very difficult
challenges to the robot controller in the form of complex and
flexible gait planning, truly dynamic movements, balance
maintenance under unexpected environmental forces and
disturbances. Manual programming of every gait and balance
strategy is an extremely tedious proposition and is not prac-
tically implementable. Formulation and implementation of
generic autonomous behavior, however, need a deep intuitive
understanding of the fundamental humanoid dynamics.

Reduced biped models such as the different variations
of the inverted pendulum models [1], [2], [3], [4] have
been very beneficial. These models allow us to ignore the
movements of the individual limbs of the humanoid and
instead focus on two important points - the center of pressure
(CoP) and the center of mass (CoM) - and the line joining
them. While at the final implementation stage one still needs
to formulate control laws for the entire system, it is the
analysis and planning stage where such reduced models
show their value. By focusing attention to the fundamental
aspects of humanoid dynamics, such models open the way
to new classes of control laws, which would otherwise be
difficult or impossible to conceive.

Once the basic characteristics of the control strategy is
formulated in the reduced-dimensional space, where intu-
ition is strong, one needs to ”map” the strategy back to the
full dynamic model of the humanoid for an implementation
ready control law.

Fig. 1. Conceptual diagram of the RMP model of a humanoid. The RMP
consists of a “leg” connecting the robot’s CoM and CoP. The reaction mass
ellipsoid, signifying the aggregate generalized mass of the robot, sits atop
the leg and is coincident with the CoM. As the robot moves, the shape, size
and orientation of the ellipsoid changes in a manner described in Section II.

While useful in their own right, a limitation of the
above models is that they represent the entire humanoid
body only as a point mass and do not characterize the
significant centroidal moment of inertia of the humanoid
body (except [4]). The centroidal moment of inertia is a
property of the distributed masses of the robot limbs (head,
arms, legs, etc) away from the CoM. We have earlier demon-
strated that a humanoid’s state of balance is closely related
to its rotational equilibrium which, in turn, is dependent
on its angular momentum rate change (also see [5]). The
centroidal moment of inertia directly contributes to the
centroidal angular momentum and its rate of change. Direct
manipulation of momenta is becoming a reasonable, and
sometimes preferable, way to control a robot [6], [7]. The
RMP model is expected to be useful for these controllers.
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As shown in Fig. 1, an RMP consists of two components,
a “leg” that joins the CoP and the CoM, and an ellipsoidal
“body” – the abstracted reaction mass – that characterizes the
generalized inertia of the entire robot projected at the CoM.
As the robot moves in space, so does the RMP, resulting
in a continuous movement of the CoP and CoM. All limb
movements of the robot affect its centroidal moment of
inertia, which is captured by the changing shape, size and
orientation of the ellipsoidal reaction mass.

II. GENERATING THE RMP MODEL OF A HUMANOID

We generate the RMP model of a humanoid by developing
the concept of generalized inertia of an articulated chain.
In this section we derive the necessary equations starting
from a single rigid body to finally exploit the concept of
composite rigid body (CRB) inertia. In Section III we outline
a mechanical realization of the RMP.

A. Generalized inertia of single rigid body

The generalized inertia of a rigid body I with respect to
a body-fixed coordinate frame has the following structure

I =
[

Ī m[r]
−m[r] mE

]
, (1)

where m is the mass, Ī ∈ R3×3 is the rotational inertia
matrix, r ∈ R3 is the position of the CoM1, and E is the
3×3 identity matrix. Ī and I are symmetric positive definite
matrices.

Let T =
[
R p
0 1

]
∈ SE(3) denote the homogeneous

transformation matrix of the body frame with respect to a
spatial frame {s}. Then the generalized velocity V of the
rigid body with respect to the body frame is given by

V = T−1Ṫ =
[
[w] v
0 0

]
∈ se(3)

where w and v are its angular and linear velocities. V
will also be written as V = (wT ,vT )T for convenience.
Subsequently, the generalized momentum of the rigid body
is

h = (kT , lT )T = IV ∈ se∗(3)

where k and l are the angular and linear momenta.
The generalized velocity V with respect to {s} is given

by sV = AdT V = TV T−1. 2 The adjoint mapping AdT :
se(3) → se(3), also known as spatial motion transform, can
be written as

AdT V =
[

R 0
[p]R R

](
w
v

)
.

1[r] is the skew-symmetric matrix representation of r; i.e., [r1]r2 =
r1 × r2.

2Left superscript s indicates the symbol is expressed in a spatial frame
{s}. Likewise, we will use left superscript 0 and g to indicate a spatial
frame that coincides with the base frame and the one located at CoM of
the humanoid robot respectively. No left superscript is used when a symbol
is expressed in the body frame.

The generalized momentum with respect to {s} is sh =
Ad∗T−1h, where dual adjoint mapping Ad∗T : se∗(3) →
se∗(3) is defined as

Ad∗T =
[

R 0
[p]R R

]T

.

Finally, by exploiting the equality of the kinetic energy in
two different frames, we can derive the coordinate transfor-
mation of the generalized inertia;

sI = Ad∗T−1IAdT−1 . (2)

One can find more details on Lie group theoretic approach
on rigid body kinematics from [8].

B. CRB inertia of a humanoid robot

We assume that a humanoid robot model consists of n + 1
links with the base link, usually the pelvis, indexed as 0.
Θ = (T 0, q) denotes the generalized coordinates of the
humanoid robot, where T 0 ∈ SE(3) is the transformation
matrix of the body frame of the base link (base frame
hereafter.) and q = (q1, . . . , qn)T ∈ Rn is the joint angle
vector of the robot. Subsequently, Θ̇ denotes the body
velocity of the base frame and joint velocities, i.e., (V 0, q̇),
where V 0 = T−1

0 Ṫ 0

T i denotes the transformation matrix from the spatial
frame to the body frame of link i, and Gi = T−1

0 T i is the
transformation matrix from the base frame to link i. Note
that Gi does not depend on T 0 and is entirely determined
by q. We assume that, except for the base link, each link
is connected to its parent link by a 1-DOF joint. Then
T i = T pi

Hie
Siqi holds for i > 0 where pi is the parent

link of the link i, Hi is the transformation from pi to i at
qi = 0, and Si ∈ se(3) is the screw parameter of the joint.

We define the link Jacobian J i of a link i similar to the
manipulator Jacobian as follows;

J i = [ AdG−1
i

, J i,q ] (3)

J i,q = [Ji,1, . . . , Ji,n] ∈ R6×n (4)

where Ji,j = T i
−1

(
∂T i/∂qj

)
= Gi

−1
(
∂Gi/∂qj

)
.

AdG−1
i

and J i,q are the Jacobians due to the change of
the base frame and joint angles respectively. Ji,j can be
computed recursively as follows;

Ji,j = Ad−1

H ieSiqi
Jpi,j + Siδi,j for i = 1 . . . n (5)

where J0,j = 0 and δi,j is the Kronecker delta function.
Using the link Jacobian, we can decompose the velocity

of {i} into the sum of the velocity due to the base link and
the one due to the joint velocities;

V i = J iΘ̇ = AdG−1
i

V 0 + J i,qq̇. (6)

The generalized momentum h of the humanoid robot is
the sum of generalized momentum of each link. The one
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with respect to the base frame 3 is

0h =
∑

i

0hi =
∑

i

0Ii
0
V i (7)

= 0IV 0 +
∑

i

Ad∗G−1
i

IiJ i,qq̇ (8)

= 0I (V 0 + Aq̇) (9)

where 0I =
∑

Ad∗G−1
i

IiAdG−1
i

=
∑

0Ii is the CRB
inertia [22] expressed in the base frame and A(q) is the
so-called mechanical connection [9]. The CRB inertia of
a humanoid robot is its instantaneous generalized inertia,
assuming that all of its joints are frozen. It has the same
structure as the generalized inertia of a single rigid body
(Eq. 1). CRB inertia is identical to the so-called locked
inertia, used in geometric mechanics[9]. As can be seen in
(9), the CRB inertia contributes directly to the generalized
momentum via the mechanical connection.

While the CRB inertia can be expressed with respect to
any frame, the one at CoM is particularly interesting since
it is related to the centroidal angular momentum. Hence we
use gI in the RMP model.

C. Equimomental ellipsoids
The association of the rigid body inertia to an ellipsoid

is well known and has been thoroughly exploited in physics
and engineering [10]. In a similar fashion, we determine
the ellipsoid associated with the centroidal CRB inertia of
an articulated chain. Instead of using the kinetic energy
ellipsoid, which is traditionally described with an inertia, we
derive the equimomental ellipsoid corresponding to a CRB
inertia. Two inertias are said to be equimomental if their
moments of inertia about any arbitrary axis are equal [11].
The equimomental ellipsoid of a rigid body is an ellipsoid
with a uniform density set as the mean density of the body
and having the same rotational inertia about any arbitrary
axis as that of the rigid body. Kinetic energy ellipsoid
characterizes the torque needed to rotate the body about an
axis whereas the equimomental ellipsoid reflects the mass
distribution along an axis.

Let (σ1, σ2, σ3) denote the eigenvalues of the rotational
inertia, and (a1, a2, a3) denote the semi-axes of the equimo-
mental ellipsoid. From the relationships σ1 = 2

5ma2a3,
σ2 = 2

5ma1a3, σ3 = 2
5ma1a2, and m = 4

3πa1a2a3ρ,
where ρ is the mean density, we can derive the following:

ai =
(σ1 σ2 σ3)2/5

σi(8πρ/15)1/5
for i = 1, 2, 3

D. Simulation results
We used Webots [12], a commercial simulation software,

and developed additional code to establish a platform that
continuously maps a given motion of a humanoid into its
corresponding RMP. The process involves the computation
of 1) CoM, 2) CoP, and 3) CRB Inertia about CoM, using
robot kinematic and dynamic parameters, as well as motion
data. We simulated the Fujitsu HOAP2 biped model, for

3More precisely, a spatial frame that coincides with the base frame.

which the parameters for some dramatic movements are
available [13].

Fig. 2 shows snapshots of HOAP2 executing Sumo-style
movements. Notice the significant changes in the shape, size
and orientation of the reaction mass ellipsoid4 as the robot
moves through different phases of its motion. Since the
robot→RMP is a mapping to a lower dimension, different
poses of the robot, at least theoretically, may get mapped to
the same RMP.

Fig. 2. Snapshots of HOAP2 robot performing Sumo-style motion
superposed with corresponding RMP models. The reaction mass geometry
undergoes significant changes during this motion.

III. PROPERTIES AND PARAMETERS OF RMP

We have now seen how a humanoid robot can be reduced
to an RMP. In this section we will discuss the realization of
a mechanical model of the RMP.

A. Description of RMP

The reaction wheel, which is also called inertia wheel, is
one of a number of standard momentum exchange devices
that are used to control satellite orientation [14]. An actuated
reaction wheel attached to a rigid rod becomes a reaction
wheel pendulum which has also been studied [15], [16],
[17]. The present work can be identified with that of [18],
[19], where the benefit of a reaction mass feature of the
humanoid as a mean to stabilize lateral biped dynamics is
indicated. The current work is closest in spirit to the recently
introduced inverted pendulum model with angular momen-
tum properties (AMPM) [20], [4]. We seek to propose a
physical model characterizing angular momentum.

The RMP mathematical model discussed here is not to be
confused with the actual placement of a physical reaction
mass device for the control of humanoid balance, as was
done in [21].

4Reaction mass ellipsoid and CRB inertia ellipsoid are synonymous
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The 3D reaction mass has continuously variable inertia.
At any given configuration of the robot, the CRB inertia
can be reduced to an ellipsoid. This is modeled, as shown
in Fig. 3(a) by three pairs of point masses linearly actu-
ated along the three principal orthogonal directions of the
ellipsoid. Along each axis k, the distance between the point
masses is 2rk. The masses of each pair are always equi-
distant from the ellipsoid center. The CoM of the ellipsoid
is therefore always fixed at its center. The six point mass
can have equal masses, i.e., m = M/6, so that they sum up
to total mass of the humanoid robot. The distance between
the masses depends on its corresponding rotational inertia,
as each axis generates a moment of inertia mr2

k.
The radial movement of the point masses only affect the

shape and size of the ellipsoid. When rk = 0 for k = 1, 2, 3
the ellipsoid reduces to a point mass and the RMP reduces
to a 3D inverted pendulum. The list of all eleven generalized
coordinates and nine generalized forces are listed in Table. I.

fr

m

m

m

m

m

m

(a)

Mg

fr

fl, rl

f, r

α,τ

θ,τθ

0.5M

0.5M

(b)
Fig. 3. (a) Conceptual mechanical realization of the 3D RMP. The ellipsoid
can be reduced to three pairs of equal point masses at different radial
distances that are radially actuated to slide on their linear tracks. The overall
frame consisting of the three pairs of linear tracks form the skeleton which
can be actuated in three rotational degrees of freedom (dof). (b) 2D Reaction
wheel Pendulum Model. The distance between the two point masses is 2r.

B. 2D Reaction wheel pendulum model

The 2D version of the RMP is equivalent to a reac-
tion wheel pendulum, for which a realization is shown in
Fig. 3(b). The generalized coordinates and generalized forces
for this model are (θ, α, rl, r) and (τθ, τ, fl, f), respectively.
The total mass of the pendulum is 0.5M + 0.5M = M ,
whereas its rotational inertia about CoM is Ī = Mr2.

The equations of motion of this model are derived using
Lagrangian techniques.

fl = Mr̈l −Mrlθ̇
2 + Mg sin θ (10)

f = Mr̈ −Mr(θ̇ + α̇)2 (11)

τθ = Mr2
l θ̈ + Mr2(θ̈ + α̈) + 2Mrlṙlθ̇

+ 2Mrṙ(θ̇ + α̇) + Mgrl cos θ (12)

TABLE I
GENERALIZED VARIABLES OF RMP

Physical description Generalized coordinates (forces)
2D 3D

Radial distances of three pairs of
point masses forming the ellipsoid
and their actuation on linear tracks

r (f ) r1, r2, r3

(f1, f2, f3)

Orientation angles of the ellipsoid
body and their actuation

α (τ ) α, β, γ
(τ1, τ2, τ3)

Leg length and its actuation rl (fl) rl (fl)
Leg orientation angles and their
actuation

θ (τθ) θ, φ (τθ ,
τφ)

CoP position and ground reaction
force

xCoP
(Rx, Ry)

xCoP ,
yCoP
(Rx, Ry , Rz)

τ = Mr2(θ̈ + α̈) + 2Mrṙ(θ̇ + α̇). (13)

The ground reaction force to the reaction mass pendulum
is fr = M(r̈l − g). We can also express the angular
momentum in terms of the generalized coordinates; i.e.,
τ = k̇G and τθ = k̇p + Mgrl cos θ.

As known, a reaction wheel pendulum can have interesting
dynamics. For example, if we set τθ = 0, θ̇ = θ̈ = 0, then
we can compute τ that keeps θ = θc stationary, i.e., τ =
−Mgr cos θc. The torque creates an angular acceleration α̈
which cannot continue indefinitely due to robot joint limits.
However, the example showcases the situation where the
robot ”leg” can be in static stability while the CoM ground
projection is outside of the support base.

IV. INERTIA SHAPING: AN RMP-BASED CONTROLLER

A humanoid robot has a large number of DOFs: for
example HOAP2 robot has 25 DOFs and Asimo has 27
DOFs. In order to kinematically transform an RMP back to
a humanoid robot, one needs to generate a map from the 11–
dimensional RMP space to the much larger robot kinematics
space. A unique mapping will need additional constraints,
such as in the form of desired hand or foot position.

For control purposes we need to string out the nonzero
elements of a matrix. The “strung out” vector corresponding

to the generalized inertia matrix is Î = (̂̄IT

,mrT )T ∈ R9

and ̂̄I = (Ixx, Ixy, Ixz, Iyy, Iyz, Izz)T .

A. CRB inertia Jacobian
The CRB inertia Jacobian JI maps changes in the

generalized coordinates into corresponding changes in the
CRB inertia; i.e.,

δsÎ = JIδΘ. (14)

In the following sections, we use I in the spatial frame
without using superscripts. The CRB inertia Jacobian is
decomposed into two parts, JI = [ JI ,0 JI ,q ], where
JI ,0 ∈ R9×6 and JI ,q ∈ R9×n map the motion of the
base frame and the joint angles, respectively, to the rate of
change of the CRB inertia; i.e.,

δÎ = JI ,0(T
−1
0 δT 0) + JI ,qδq. (15)
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Specifically,

JI ,0 = (JT 0,1, · · · , JT 0,6), where JT 0,i = ˙̂
I|V 0=ei,q̇=0

JI ,q = (Jq1 , · · · , Jqn), where Jqi = ∂Î/∂qi.

Using the relations ∂AdGi
/∂qj = AdGi

adJi,j where

Ji,j = Gi
−1 ∂Gi

∂qj
as defined in (5), we can derive analytical

expression for İ and ∂I
∂qj

; i.e.,

İ|q̇=0 = −ad∗sV 0

0I − 0IadsV 0 (16)

∂I

∂qj
= −

n∑
i=1

ad∗sJi,j
Ii + IiadsJi,j

. (17)

where another adjoint mapping adV : se(3) → se(3) is
given by adV 1V 2 = V 1V 2 − V 2V 1, or equivalently by

adV 1V 2 =
[
[w1] 0
[v1] [w1]

](
w2

v2

)
.

Note that the CRB inertia Jacobian includes the CoM
Jacobian. If we partition JI into JI = [ JT

Ī
JT

G ]T where
JG consists of the bottom 3 rows of JI , we get

m ˙rG = JGΘ̇. (18)

JG maps the generalized velocity to the linear momentum
of the system. In fact, it is the same as the CoM Jacobian
scaled by the total mass.

B. CRB inertia Jacobian of humanoid
If the humanoid robot is not in contact with external

environment, (15) completely describes the CRB inertia
Jacobian. Otherwise, however, geometric constraints arise
among the generalized coordinates, and it is advantageous
to describe the CRB inertia Jacobian in independent coordi-
nates.

Let us assume q comprises of q = (qT
r qT

l qT
t )T , where

q{r,l} ∈ R6 is joint angles for right and left legs respectively
and qt is for the rest of joints. We also decompose JI
accordingly; i.e.,

JI =
[
JĪ0

JĪr
JĪ l

JĪt
JG0 JGr JGl JGt

]
. (19)

We describe CRB inertia Jacobian for each ground contact
case.

1) Free floating:

δ̂̄I = JĪ0
(T 0δT

−1
0 ) + [JĪr

JĪ l
JĪt

]δq (20)

mδrG = JG0(T 0δT
−1
0 ) + [JGr JGl JGt]δq (21)

2) Single support by left or right foot: Let us suppose the
humanoid robot is supported by one foot link, left foot link
for example, which is stationary with respect to the ground.
Then we can describe the constraint as follows;

T−1
l δT l = 0 (22)

where T l is the transformation matrix for the left foot link.
From T l = T 0Gl(q), we can derive the following relation;

T−1
0 δT 0 = −AdGl

J lδq. (23)

Defining J∗
l such that AdGl

J lδq = J∗
l δql, the CRB inertia

Jacobian is written with respect to the joint angles;

δ̂̄I = [JĪr
(JĪ l

− JĪ0
J∗

l ) JĪt
]δq (24)

mδrG = [JGr (JGl − JG0J
∗
l ) JGt]δq. (25)

3) Double support: When both feet are stationary to the
ground, from the additional constraint J∗

l δql = J∗
rδqr, we

have δqr = J∗
r
−1

J∗
l δql. Therefore,

δ̂̄I = [(JĪ l
+ (JĪr

J∗
r
−1 − JĪ0

)J∗
l ) JĪt

]
(

δql

δqt

)
(26)

mδrG = [(JGl + (JGrJ
∗
r
−1 − JG0)J∗

l ) JGt]
(

δql

δqt

)
. (27)

C. Inertia shaping

An interesting application of our RMP modeling approach
is what we call inertia shaping of an articulated chain. Inertia
shaping is a high-level approach to precisely control the
aggregate dynamic characteristics of an articulated chain by
controlling its CRB inertia. Given a desired CRB inertia
Id from the RMP model, the humanoid should make a
proper pose to achieve this goal. This can be posed as an
inverse kinematics problem with the desired CRB inertia
constraints. Since we have derived the CRB inertia Jacobian,
the inverse kinematics problem can be solved by any suit-
able optimization algorithm. The simplest solution will be
updating desired joint angles using pseudo-inverse of CRB
inertia Jacobian Eq. 14, i.e.,

δΘI = J†
I
δ(Îd − Î) (28)

where ΘI is the vector of independent generalized coordi-
nates and J†

I
= JT

I (JIJT
I )−1.

Fig. 4 presents three examples of inertia shaping on a
non-contacting biped5 floating in space (say, a humanoid
astronaut). The robot is given three different commands,
shown in series a, b, and c, respectively, to try to match its
own CRB inertia to a desired CRB inertia. Starting from an
initial configuration, the robot moves its joints such that the
cost function, the Frobenius norm of the difference between
the two inertias, is minimized.

In Fig. 4(a) desired inertia components along all three
axes are equal and large. Hence the robot tries to ”expand”
in all directions. In Fig. 4(b) the desired inertia along Y-axis
(vertical) is big, and the other directions are very small. In
Fig. 4(c) robot tries to make its inertia along X and Z larger
at the cost of Y-direction.

This simulation demonstrates the important point of effec-
tively controlling a complex biped with a very simple control
law. While the robot model has 27 dofs, the control law
deals with only three variables which are the three diagonal
elements of the robot’s rotational inertia.

5The biped is similar to the Honda humanoid Asimo with some simpli-
fications.

FrE3.4

4671



(a)

(b)

(c)

Fig. 4. Demonstration of the inertia shaping technique on a non-contacting
biped robot floating in space. A floating robot has no CoP, so the RMP
reduces to simply the ellipsoidal reaction mass.

V. CONCLUSIONS AND FUTURE WORK

We have introduced the reaction mass pendulum (RMP)
model of a humanoid robot. The RMP model contains an
actuated ellipsoidal reaction mass to explicitly model the
robot’s angular momentum. The ellipsoid represents the
composite rigid body (CRB) inertia of the robot computed
at its CoM. The reaction mass is an addition to the existing
inverted pendulum humanoid models that only consider a
point mass, and is also a mechanical realization of the
AMPM model that accounts for the presence of centroidal
angular momentum.

The RMP is an instantaneous 3D capture of the aggregate
kinematics and dynamics of a general humanoid robot. As a
lower-dimensional (n = 11) dynamic equivalent of a high-
dof humanoid it lends itself to more probing analysis for
dynamics and planning.

We presented the technique of inertia shaping, which
can be thought of as a dynamics-based higher-level control
for humanoid. We have provided detailed formulations for
each ground contact configuration and demonstrated the
successful application to a free floating case.

RMP is introduced mainly as an analysis tool. For it to
be a worthwhile successor to the very useful linear inverted
pendulum (LIPM) or AMPM models, one needs to formulate
control laws based on linear or simplified dynamics of the
RMP and apply them successfully to humanoids. This work
is ongoing.
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