
ACM Reference Format
Lee, S., Terzopoulos, D. 2008. Spline Joints for Multibody Dynamics. ACM Trans. Graph. 27, 3, Article 22
(August 2008), 8 pages. DOI = 10.1145/1360612.1360621 http://doi.acm.org/10.1145/1360612.1360621.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2008 ACM 0730-0301/2008/03-ART22 $5.00 DOI 10.1145/1360612.1360621
http://doi.acm.org/10.1145/1360612.1360621

Spline Joints for Multibody Dynamics

Sung-Hee Lee∗ Demetri Terzopoulos†

University of California, Los Angeles

Figure 1: A spline joint can much more accurately model complex biological joints than is possible using conventional joint models.

Abstract

Spline joints are a novel class of joints that can model general scle-
ronomic constraints for multibody dynamics based on the minimal-
coordinates formulation. The main idea is to introduce spline
curves and surfaces in the modeling of joints: We model 1-DOF
joints using splines on SE(3), and construct multi-DOF joints as
the product of exponentials of splines in Euclidean space. We
present efficient recursive algorithms to compute the derivatives of
the spline joint, as well as geometric algorithms to determine op-
timal parameters in order to achieve the desired joint motion. Our
spline joints can be used to create interesting new simulated mecha-
nisms for computer animation and they can more accurately model
complex biomechanical joints such as the knee and shoulder.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: Biological Joints, Multibody Dynamics, Scleronomic
Joints, Splines

1 Introduction

Traditionally, only a few types of elementary joints have been used
to model articulated multibody systems for physics-based anima-
tion, robotics, and human movement research. These are the lower
pairs [Reuleaux 1876]; i.e., the prismatic, helical, cylindrical, pla-
nar, and spherical joints, and their compounds, such as the universal
joint. The lower pairs, which are used for modeling most mechan-
ical or biological systems, are characterized by one or more fixed
axes of rotation or translation.

∗www.cs.ucla.edu/∼sunghee
†www.cs.ucla.edu/∼dt

When it comes to designing practical machines, using only the
lower pair joints seems reasonable, not because they are ideal
choices for every mechanism, but because it is difficult to man-
ufacture more complex types of joints. For the same reason,
the creation of more sophisticated joints has been largely ne-
glected in multibody dynamics research. Not surprisingly, there-
fore, most dynamics simulators and game physics engines, such
as ADAMS (www.mscsoftware.com), the Open Dynamics Engine
(www.ode.org), and SD/FAST (www.sdfast.com), provide only
fairly simple types of joint models limited to fixed joint axes.

By contrast, more complex joints are common in biological sys-
tems. Due to the complicated shapes of bones, biological joints
usually produce non-trivial movement patterns. For example, the
femorotibial joint (Fig. 1) undergoes both rotation and sliding as it
is flexed and extended [Kapandji 1974]; it cannot be accurately ap-
proximated by a lower pair. While it may be reasonable to approx-
imate biological joints, such as those in the neck, by lower pairs
when one is interested only in macroscopic joint articulation [Lee
and Terzopoulos 2006], the more accurate analysis and simulation
of biological joint motion is important in biomechanics research
and medical applications such as virtual surgery simulation or pros-
thetics design [Delp et al. 1990].

We propose a technique for modeling general scleronomic joints for
multibody dynamics based on the minimal-coordinates (or reduced-
coordinates) formulation. The scleronomic joint imposes bilateral,
time-invariant contact constraints. Thus, the relative configuration
of the connected bodies is determined wholly by the joint coor-
dinates. While maximal-coordinate dynamics approaches provide
the means to simulate arbitrary scleronomic joint constraints, to
our knowledge ours is the first generalized approach to modeling
arbitrary scleronomic joints for multibody dynamics based on the
minimal-coordinates approach, which offers important advantages.

In designing a general scleronomic joint, our key idea is to use
splines to model arbitrary, complex joint motions. Hence, we call
these spline joints. Specifically, we formulate the 1-DOF (degree
of freedom) spline curve joint as the product of exponentials of a
twist multiplied by a spline basis function, thus defining an arbi-
trary C2-continuous spline motion curve (R �→ SE(3)) that is free
of singularities. We furthermore present geometric data-fitting and
smoothing algorithms for 1-DOF spline joint design. Since higher-
dimensional, analytically differentiable splines on SE(3) are not yet
known, we formulate an n-DOF spline joint as the product of six
exponentials of a basis twist multiplied by an n-parameter spline.

ACM Transactions on Graphics, Vol. 27, No. 3, Article 22, Publication date: August 2008.

An advantage of spline joints is that one can employ existing
dynamics algorithms without modification. Our technique ex-
ploits minimal-coordinates-based dynamics algorithms in modeling
general scleronomic constraints. Unlike maximal-coordinates ap-
proaches, the spline joint does not suffer from the “drift problem”.
Hence, it does not require a stabilization process, and this allows
larger simulation time steps. As the derivatives of the joint up to
the second order are required for dynamics simulation, we provide
efficient recursive algorithms to compute the analytic joint Jacobian
and Hessian. The former also enables the easy computation of the
inverse kinematics of the joint.

In addition to enabling the more accurate modeling of biological
joints, such as the knee shown in Fig. 1, spline joints can also be ap-
plied in computer graphics to create mechanisms more interesting
than those made of simple joints. One has more freedom in design-
ing complex joints for kinematic or dynamic computer animation
because they need not be easy to manufacture. We apply our spline
joint models to create some interesting animated mechanisms.

2 Related Work

Researchers have endeavored to create complex models of biologi-
cal joints, but no prior effort has provided a suitably complex joint
model that can be used in dynamics simulation. Delp et al. [1990]
and Maciel et al. [2002] modeled the knee as a revolute joint whose
joint axis translates along a parametric curve. Shao and Ng-Thow-
Hing [2003] proposed a general framework for modeling complex
joints by composing elementary joint components. Their method is
useful for forward kinematics, but they too did not consider inverse
kinematics or dynamics.

Our work is related to research on spline curves for rotation. The
splines on SO(3) that smoothly interpolate rotations are rather in-
volved. Shoemake [1985] proposed the interpolation of rotations
using quaternions. Various techniques have been developed to
achieve optimal spline curves in SO(3) that minimize the tangential
acceleration [Gabriel and Kajiya 1985; Barr et al. 1992; Kim et al.
1995; Ramamoorthi and Barr 1997; Park and Ravani 1997]. Since
the interest is in interpolating the rigid motion of a single body, they
all rightfully divide the problem on SE(3) into an interpolating ro-
tation in SO(3) and translation in R

3. In contrast, we are interested
in the articulated motion of a jointed, multibody system. Hence, we
treat rigid-body motion as a screw motion, without decomposing
it into rotation and translation. We adopt the spline algorithms on
SO(3) proposed by Kim et al. [1995] and extend their methods to
SE(3) for use in our spline curve joints. Their approach provides a
simple form of the derivatives of the spline curve, which makes it
easier to compute the dynamics of spline joints.

Kry and Pai [2003] introduced a continuous surface contact sim-
ulation technique in a minimal-coordinates dynamics framework.
Since they handle general topological surfaces obtained by sub-
division, the computation of derivatives is more involved. By
contrast, our method features the efficient computation of deriva-
tives thanks to the structure of the joint representation. Tändl and
Kecskeméthy [2007] use the Frenet frame of spline curves inR

3 for
the dynamics simulation of simple mechanisms. The orientation of
the Frenet frame is determined entirely by the spline curve, whereas
the orientation of the frame in our model is independent of its posi-
tion along the curve, which enables us to model arbitrary rotations
along the motion curve. Moreover, we use C2-continuous splines,
whereas they must use C4-continuous splines.

Our spline joint can easily be incorporated into current dynamics
algorithms. Featherstone [1987] developed an articulated-body dy-
namics algorithm for multiple-DOF joints, such as the universal

joint. One can use this dynamics algorithm without modification to
simulate spline joints (see Appendix A).

3 Geometric Preliminaries

This section briefly introduces geometric tools derived from Lie
group theory that we will use in this paper. Readers who are fa-
miliar with differential geometry can skip this section. Additional
details can be found in [Murray et al. 1994].

Given a moving body frame T(t) = (R,p) ∈ SE(3), where R ∈
SO(3) denotes rotation and p ∈ R

3 translation, its generalized ve-
locity expressed in the instantaneous body frame (hence dubbed the
body velocity) is defined as a twist

v̂= T−1Ṫ=
[
[ω] υ
0 0

]
, (1)

which is an element of se(3), the Lie algebra of SE(3), whereω and
υ are, respectively, the angular and linear velocities of T expressed
in the body frame. The 3×3 skew-symmetric matrix ofω is denoted
as [ω]. We also represent the twist v̂ as a vector v= [ωT ,υT]T . The
∨ operator maps a twist to the corresponding twist coordinate; i.e.,
v̂∨ = v.

Given T ∈ SE(3) and g = [ωT ,υT]T ∈ se(3), the adjoint mapping
AdT : se(3) �→ se(3) is defined as AdT ĝ = TĝT−1, or in matrix
form as

AdT g=
[
R 0

[p]R R

][
ω
υ

]
. (2)

The adjoint mapping is used in the coordinate transformation of
twists. As we will see in Section 4, the body velocity of frame
{i−1} expressed in frame {i} is written as

ivi−1 = AdG−1i
vi−1, (3)

where Gi is the configuration of frame {i} with respect to {i−1}.
Another useful operator is the Lie bracket adĝ : se(3) �→ se(3) and
it occurs when (2) is differentiated. The Lie bracket is defined as
adĝ1 ĝ2 = ĝ1ĝ2− ĝ2ĝ1, or

adg1g2 =
[
[ω1] 0
[υ1] [ω1]

][
ω2
υ2

]
. (4)

The generalized force f = [μT ,ηT]T is an element of se∗(3), the
dual space of se(3), where μ ∈R

3 represents a moment and η ∈R
3

a force. In matrix form, the corresponding dual adjoint mappings
Ad∗T : se∗(3) �→ se∗(3) and ad∗g : se∗(3) �→ se∗(3) are the transposes
of AdT and adg; i.e.,

Ad∗T = AdTT, ad∗g = adTg . (5)

One can easily verify that Ad−1T g= AdT−1g and adgg= 0.

For all g ∈ se(3), eĝ is an element of SE(3). There exists a closed-
form formula of the exponential map exp : se(3) �→ SE(3) [Murray
et al. 1994]. Note that the derivative of the exponential map is not

trivial; eĝ(t) dĝ(t)dt �= d
dt e

ĝ(t) �= dĝ(t)
dt eĝ(t) in general. However, in the

case where the rigid motion is due to a constant twist, its derivative
takes the following simple form:

d
dt
eŝρ(t) = eŝρ(t)ŝρ̇(t) = ŝeŝρ(t)ρ̇(t). (6)

22:2 • S.-H. Lee et al.

ACM Transactions on Graphics, Vol. 27, No. 3, Article 22, Publication date: August 2008.

q; q Generalized coordinate; vector of generalized coords
q̆i The ith knot
ẋ Differentiation of x with respect to time t
x′ Differentiation of x with respect to q
Ti The configuration of frame {i} w.r.t. the inertial frame
Gi The configuration of frame {i} w.r.t. its parent frame
Ği The ith control frame
zi The ith control twist
vi The body velocity of Ti
ui The body velocity of Gi
Si The joint Jacobian of frame {i}

Table 1: Frequently used symbols.

Finally, using the notations defined above, the Newton-Euler equa-
tions of the motion of a rigid body are expressed in a simple form
as follows [Park et al. 1995]:

f= Jv̇− ad∗vJv, (7)

where f ∈ se∗(3) is the generalized force applied to the rigid body
and v ∈ se(3) is the generalized velocity. The generalized inertia
J ∈ R

6×6 of the rigid body has the following structure:

J=
[

I m[r]
m[r]T mI

]
, (8)

where m is the mass, I ∈ R
3×3 is the rotational inertia matrix,

r ∈ R
3 is the position of the center of mass, and I is the identity

matrix. Eq. (7) is coordinate-invariant; i.e., it holds with respect to
any coordinate frame.

Table 1 presents a list of symbols that we will use frequently.

4 Dynamics of General Scleronomic Joints

With the geometric tools introduced in Section 3, we will now de-
rive the kinematics and dynamics equations for general scleronomic
joints, including the lower pair joints.

Assuming that link i of a multibody system is connected to its par-
ent link i− 1 via a joint, the configuration Ti ∈ SE(3) of the body
frame {i} of i with respect to the inertial reference frame is

Ti = Ti−1Gi, (9)

where Ti−1 is the configuration of {i−1}, and Gi denotes the rela-
tive configuration of {i} with respect to {i−1}, which we will call
the joint transformation. It is determined by the action of the joint
and, for scleronomic joints, it is determined entirely by the joint co-
ordinate qi ∈ R

n, where n is the number of DOFs of the joint; i.e.,
Gi =Gi(qi). The generalized joint velocity generated by the action
of the joint is

ûi =G−1i Ġi. (10)

Substituting (9) into (1), we can express the body velocity vi as the
velocity of link i−1 plus that of the joint:

vi = ivi−1+ui. (11)

For scleronomic joints,

ui(qi) = Si(qi)q̇i, (12)

where Si(qi) =
(
G−1i

dGi
dqi

)∨
. (13)

Figure 2: An elliptic joint. The child link (green) is constrained to
slide along the ellipse attached to the parent link (purple).

The 6×n joint Jacobian Si is a mapping from the time derivatives
of the joint coordinates q̇i to the generalized joint velocity ui. Using
(13), the time derivative of vi can be expressed as

v̇i = iv̇i−1+ adviSiq̇i+ q̇
T
i ∇Siq̇i+Siq̈i, (14)

where ∇Si is the joint Hessian. Finally, from (7), the Newton-Euler
equations of the motion of link i and the joint force or torque τ are
as follows:

fi = Jiv̇i− ad∗viJivi+ ifi+1− fe,i, (15)

τi = STi fi, (16)

where fi ∈ se∗(3) is the generalized force applied by link i− 1 to
link i and fe,i is the external force (e.g., gravity) on link i. Note that
ifi+1 = Ad∗

G−1i+1
fi+1 expresses fi+1 relative to frame {i}.

Based on the above Lie group theoretic formulation of the kinemat-
ics and dynamics equations of general scleronomic joints, we derive
in Appendix A an O(n) recursive forward dynamics algorithm for
simulating such joints.

4.1 Creating New Joints

According to (9)–(16), the joint transformation as well as its Ja-
cobian and Hessian are necessary for the kinematic analysis and
dynamic simulation of the system. Hence, to create a new joint, it
suffices to define a twice-differentiable joint transformation and its
derivatives. Before defining new joints, consider the joint transfor-
mation, Jacobian, and Hessian of some simple joints.

The helical joint with pitch h has a joint transformation in the form
of an exponential of a twist of a screw parameter s= [0,0,1,0,0,h]T

multiplied by a joint coordinate q ∈R; i.e., G(q) =G(0)eŝq. Using
(13), we can derive the joint Jacobian and Hessian as S = s and
∇S= 0. Thus, the joint Jacobian of the helical joint is constant and
it is actually the screw parameter of the joint.

The universal joint can be modeled as the product of two revo-
lute joints, G = G(0)eŝ0q0eŝ1q1 . Here, the joint Jacobian is S =[
Ad−1es1q1 s0s1

]
:= [s∗0 s1], where s

∗
0 is the instantaneous screw param-

eter at given q1, and an element of the Hessian is ds∗0/dq1 = ads∗0s1.
Note that the joint Jacobian is not constant, but is a function of the
joint coordinates, which is typically the case for multi-DOF joints.

Next, consider the creation of a non-conventional joint; for exam-
ple, an elliptic joint (Fig. 2) that constrains the child link to slide
along an ellipse with its orientation tangential to the ellipse. The

Spline Joints for Multibody Dynamics • 22:3

ACM Transactions on Graphics, Vol. 27, No. 3, Article 22, Publication date: August 2008.

joint transformation G(q) can be written as follows:

G(q) =H
[
e[k]φ(q) (asinq,−bcosq,0)T
1 0

]
, (17)

φ(q) = atan2(bsinq,acosq), (18)

where a and b are the semi-axes of the ellipse, and k is a unit vec-
tor in R

3. Once the joint transformation is defined, we must com-
pute the Jacobian and its derivative to perform dynamic simulation.
From (10) and (12),

S= [φ ′k, e−[k̂]φ [acosq, bsinq, 0]T]T , (19)

dS
dq

= [φ ′′k, e−[k̂]φ [(bφ ′ −a)sinq, (b−aφ ′)cosq, 0]T]T . (20)

Since the desired joint motion is complex, defining such a joint
transformation in closed form becomes difficult.

Ideally, it should be easy to compute the derivatives of the joint
transformation. Since splines can effectively model complex curves
and surfaces, it is natural to apply them in modeling complex joints.

5 Spline Joints

We now introduce the spline joint, a novel class of scleronomic
joints whose joint transformation is modeled using splines. Any
splines may be used for the joint transformation, as long as the fol-
lowing two requirements are satisfied:

1. The spline jointG(q)must be C2-continuous in order to main-
tain the boundedness of the joint acceleration.

2. The joint Jacobian S(q) must not vanish anywhere in the do-
main, because the generalized joint velocity will vanish where
S(q) = 0, even for non-zero joint coordinate velocity q̇.

Conceptually, we create the spline joint by defining the joint trans-
formation matrix in SE(3) as a function of joint coordinates (an
n-dimensional vector) using splines, and subsequently deriving its
derivatives up to order two. However, since SE(3) is a curved space,
it is by no means trivial to apply splines to the modeling of joint
transformations.

We employ the spline curves of Kim et al. [1995] in the modeling of
1-DOF spline joints. Their spline curves in SO(3) can be straight-
forwardly extended to SE(3) in which our spline curve joints are de-
fined. However, higher-dimensional splines (e.g., spline surfaces)
on SO(3) are not yet known.1 Hence, to create multi-DOF spline
joints, we apply splines defined in Euclidean space to the twist co-
ordinates.

5.1 Spline Curve Joint

The general interpolation scheme for SO(3) developed by Kim et
al. [1995] achieves Ck−2-continuous rotation curves for kth-order
splines by introducing a cumulative form of the splines basis func-
tions and the product of their exponentials. The merit of their
method from the perspective of joint modeling is that the deriva-
tives are easy to compute. The extension from the spline curve on
SO(3) to SE(3) is straightforward and it retains all the important
features such as local support and Ck−2 continuity.

1Alexa [2002] defined an SE(3) curve as an exponential of a spline curve
in Euclidean space. Similarly, a spline surface on SE(3) can be defined as
an exponential of a spline surface in Euclidean space, but in general the
derivatives of such a surface cannot be computed analytically.

While arbitrary C2-continuous splines may be used for our pur-
poses, consider B-splines of order k> 3 as a concrete example. Let
G(q) ∈ SE(3) be a joint transformation parameterized by q ∈ R.
Using the cumulative B-spline basis, G(q) can be expressed as the
product of exponentials of a constant control twist z multiplied by
a spline basis function

G(q) = Ğ0
m

∏
j=1

eẑ j B̃ j,k(q), (21)

where z j = log(Ğ−1j−1Ğ j). The cumulative basis function is defined
as the sum of B-spline basis functions: B̃ j,k(q) =∑m�= j B�,k(q). The
control frame Ğ j corresponds to control point j in the regular B-
spline function. Kim et al. [1995] show that the B̃ j,k(q) are non-
constant only for q̆ j < q< q̆ j+k−1:

B̃ j,k(q) =

⎧⎪⎨
⎪⎩
0 if q≤ q̆ j
∑
j+k−2
�= j B�,k(q) if q̆ j < q< q̆ j+k−1
1 if q≥ q̆ j+k−1

(22)

and that their derivatives take the simple form

d
dq
B̃ j,k(q) =

k−1
q̆ j+k−1− q̆ j

B j,k−1(q). (23)

From (22), eẑ1B̃1,k(q) = Ğ−10 Ğ1, ..., e
ẑ j−k+1B̃ j−k+1,k(q) = Ğ−1j−kĞ j−k+1,

and eẑ j+1B̃ j+1,k(q) = · · · = eẑmB̃m,k(q) = I. This greatly reduces the
number of multiplications and we can express the joint transforma-
tion as the product of only k−1 exponentials:

G(q) = Ğ j−k+1
j

∏
�= j−k+2

eẑ�B̃�,k(q). (24)

We can also see that the joint transformation is locally defined by k
control frames, Ğ j−k+1, . . . ,Ğ j. In the case of the cubic B-spline,
the joint transformation can be expressed as the product of just three
exponentials.

5.2 Multi-DOF Spline Joint

Unfortunately, the spline curve on SO(3) does not naturally extend
to the spline surface, let alone the spline surface on SE(3). An
alternative is to model the joint transformation as the product of
exponentials of six basis twists ê1, . . . , ê6:

G(q) =H
6

∏
j=1

eê jφ j(q), (25)

where φ j(q) :Rn �→R is an n-DOF spline in Euclidean space. Even
though (25) is similar in structure to (21), the two are quite differ-
ent; in the spline curve joint, the spline is defined in the SE(3)world
space, whereas in multi-DOF joints the spline is defined in each di-
mension of se(3).

It is generally advantageous to use the first three basis twists to rep-
resent the translation component of the joint transformation, while
the last three represent the rotation. This is equivalent to represent-
ing the rotation using Euler angles, which suffers from singularities
in certain configurations. Therefore, this approach cannot cover the
whole of SO(3). However, in many cases we can choose suitable
Euler angles to avoid singularities in the presence of joint limits.

22:4 • S.-H. Lee et al.

ACM Transactions on Graphics, Vol. 27, No. 3, Article 22, Publication date: August 2008.

5.3 Derivatives of the Spline Joint Transformation

For both the spline curve joint and the multi-DOF spline joint, the
joint transformation G(q) takes the form of a product of exponen-
tials. Having defined the joint transformation, we must then com-
pute its Jacobian and Hessian for the purposes of dynamics simu-
lation. An important feature of spline joints is that the twists are
constant, which enables us to compute the analytic joint Jacobian
and its derivatives efficiently as follows. The n-DOF spline joint
(n≥ 1) has the following form:

G(q) =H
m

∏
j=1

eĝ jφ j(q) , q ∈ R
n, (26)

where φ j ∈R is some function of the joint coordinates q and where
ĝ j ∈ se(3), a constant, is a control twist for the spline curve joint
or a basis twist for the n-DOF joint. Given the joint transformation,
the joint Jacobian consists of n twists; i.e., S= [s1, . . . ,sn], where

si =
(
G−1

∂G
∂qi

)∨
=

m

∑
k=1

Ad−1
eĝk+1φk+1 ···eĝmφm

gk
∂φk
∂qi

. (27)

Eq. (27) can be computed efficiently in a recursive manner:

si = μ im, (28)
where μ i0 = 0 and

μ ik = gk
∂φk
∂qi

+Ad−1
eĝkφk

μ ik−1 for 1≤ k ≤ m. (29)

Its derivatives are also expressed recursively:

∂ si
∂q j

=
∂μ im
∂q j

, (30)

where

∂μ ik
∂q j

= gk
∂ 2φk
∂qi∂q j

+Ad−1
eĝkφk

(
∂μ ik−1
∂q j

+ adμ ik−1gk
∂φk
∂q j

)
. (31)

Appendix B gives pseudo code for computing the joint derivatives.

6 Designing Spline Curve Joints

A spline joint can be designed either by directly specifying the con-
trol frames or by providing a series of joint transformations for the
spline joint to interpolate. For example, to model a biological joint
as a spline joint, one can measure the relative transformations of
the two bones in sample configurations and model a spline joint
that optimally interpolates between the estimated transformations.
We will present a geometric data fitting algorithm to determine the
control frames in this scenario. We will focus on the 1-DOF spline
curve joint. Data fitting for the multi-DOF spline joint is left for
future work, as will be discussed in Section 8.

6.1 Natural Parameterization

Given a set of control frames, we want to construct the spline joint
by assigning knot values q̆0, . . . , q̆m to each control frame. While we
can assign arbitrary ascending numbers to the knot values, a more
intuitive choice would be setting the knot values in such a way that
the distance between two frames equals the distance in the joint
coordinate space; i.e., ||δG||= ||δq|| or, equivalently, ||s(q)||= 1.
Note that since a twist contains both linear and angular motions, one
should define a suitable metric for a particular application. While it
is difficult to ensure ||s(q)|| = 1 for all q, it is easy to get approxi-
mate results by setting q̆ j = q̆ j−1+ || log(G−1j−1G j)||.2

2Here we employ the “unweighted” metric, but any reasonable metric
can be used. For example, Kaufman et al. [2005] used the inertia-weighted

6.2 Data Fitting Algorithm

Given a series of desired joint transformations Gkd at q
k for k =

1, . . . ,N, the goal of the data fitting process is to compute optimal
control frames Ğ0, . . . ,Ğm such that

argmin
Ğ0...Ğm

N

∑
k=1

d(Gkd ,G(qk)), (32)

where d(·, ·) is a metric on SE(3). We can solve this nonlinear
optimization problem by iteratively updating control frames such
that the value of the objective function decreases. Imagine that the
control frames Ğ j (and spline) are moving in space and that at each

iteration we update Ğ j using the body velocity ŭ j = Ğ−1j
˙̆G j , so that

G(qk) approaches Gkd . To this end, we need the mapping from the
velocities of the control frames to the velocities of the joint trans-
formations at qk.

For simplicity, let us consider the cubic B-spline case: G(q) =
Ğ j−3eγeβ eα , where γ = B̃ j−2ẑ j−2, β = B̃ j−1ẑ j−1, and α = B̃ j ẑ j
for q̆ j ≤ q< q̆ j+1. From the relation ż j = ŭ j−Ad−1ez j ŭ j−1, we make
the following approximation:

(
e−α

d
dt
eα
)∨
≈ B̃ j

(
ŭ j−Ad−1eα ŭ j−1

)
. (33)

Then, the velocity of the joint transformation at q can be expressed
neatly as the sum of the velocities of control frames weighted by
the (regular) B-spline basis functions:

u(q)≈ Bj−3Ad−1eγeβ eα ŭ j−3+Bj−2Ad−1eβ eα ŭ j−2
+Bj−1Ad−1eα ŭ j−1+Bjŭ j.

(34)

Using (34), we construct a matrix that relates the ŭ j to the u(qk):

Mŭc = ud , (35)

where M is a banded matrix, ŭc = (ŭT0 , . . . , ŭTm)T ∈ R
6(m+1), and

the desired velocities ud = (u(q1)T , . . . ,u(qN)T)T ∈ R
6N .

For G(qk) to approach Gkd , we constructM, specify ud by setting

u(qk) = log(G(qk)−1Gkd), (36)

solve the linear system (35) for ŭc, and update Ğ j ← Ğ jeŭ j , for
j = 0, . . . ,m, thus decreasing the value of the objective function in
(32). We iterate these steps until convergence in order to solve the
optimization problem.

6.3 Smoothing Algorithm

When the desired joint transformations are noisy, the resulting
spline joint can produce unnatural motion. In this case, we need
to smooth the spline curve in order to improve the quality of mo-
tion. An approach defining the smoothness of the spline joint is
through the joint Hessian: If it is zero, the joint axis is fixed and
produces simple motion like that of the lower pair joints. As in the
data fitting algorithm, we compute the relationship between the rate
of change of the joint Hessian at each point and the velocities of the

metric for dynamics simulation. The unweighted metric is in some sense
a geometrically reasonable one and it may give a better sense of distance
to users, while the inertia-weighted metric may be better for modeling con-
trollers.

Spline Joints for Multibody Dynamics • 22:5

ACM Transactions on Graphics, Vol. 27, No. 3, Article 22, Publication date: August 2008.

Figure 3: Knee spline joint inverse kinematics example.

control frames, and then we update the control frames in such a way
that the joint Hessians approach zero.

We give a slightly different approximation to (33) for simplicity:3

(
e−α

d
dt
eα
)∨
≈ α̇ = B̃ j

(
ŭ j−Ad−1ezi ŭ j−1

)
. (37)

Using (37), we can write the time derivative of the joint Hessian (a
vector) as

ḣ≈
(
−N′j−2Ad−1eẑ j−2

)
ŭ j−3+

(
N′j−2−N′j−1Ad−1eẑ j−1

)
ŭ j−2

+
(
N′j−1−N′jAd−1eẑ j

)
ŭ j−1+N′jŭ j,

(38)

where N j−2 = B̃′j−2Ad
−1
eβ eα

, (39)

N j−1 = B̃′j−1Ad
−1
eα + B̃ j−1Ad−1eβ eα adγ ′ , (40)

N j = B̃′jI+ B̃ jAd
−1
eα ad(β ′+Ad−1

eβ
γ ′). (41)

One can derive the analytic derivatives of the N j , but numerical
differentiation with respect to q is also simple and effective.

As in the data fitting case, we construct a matrix that transforms
the velocities of the control frame to the rate of change of the joint
Hessian:

Nŭc = ḣd . (42)

We can incorporate the smoothness criterion into the data fitting
process by minimizing (1 − w)||ud −Mŭc||2 + w||ḣd − Nŭc||2,
which can be accomplished by solving for ŭc in(

(1−w)MTM+wNTN
)
ŭc = (1−w)MTud +wNT ḣd ,

where w is a weight and ḣd can simply be set to −ch for 0< c≤ 1.
The smoothing algorithm can also be used to smooth the spline
curve while interpolating desired joint transformations by provid-
ing more control frames than are necessary for interpolation; i.e.,
since the number of control frames exceeds the minimum number
required for interpolation, the extra control frames provide addi-
tional degrees of freedom to achieve smoothness.

7 Examples and Results

Fig. 1 shows the femorotibial joint modeled as a spline curve joint.
We created the desired joint transformations by posing the tibia by

3Note that e−α deα
dt = α̇ + 1

2! [α̇,α]+ 1
3! [[α̇ ,α],α] · · · , where the Lie

bracket [α, α̇] := αα̇− α̇α . Therefore, the approximation approaches the
exact solution when α̇ is either small or parallel to α .

Figure 4: Sample poses (top) and closeup internal view (bottom)
of the scapulothoracic joint, modeled as a spline surface joint.

eye in a commercial modeling package, then applying the data fit-
ting and smoothing algorithms to generate the control frames. As
the accompanying video shows, data-fitting without smoothing cre-
ates a somewhat unnatural motion. We achieve a more natural mo-
tion after applying the smoothing algorithm.

Fig. 3 demonstrates that inverse kinematics algorithms can be ap-
plied to the spline joint. Given a target position and orientation
of the foot, an iterative inverse kinematics algorithm uses the ana-
lytic Jacobian to compute the joint coordinates of the leg required
to reach the target configuration. The hip and the ankle are modeled
as revolute joints.

The scapulothoracic joint in the shoulder is a notorious joint to
model in biomechanics. Fig. 4 demonstrates that it can be mod-
eled as a spline surface joint. The scapula is connected to the
rib cage via a 2-DOF spline surface joint and to the clavicle via
damped springs. Our approach is contrary to conventional methods
in which the clavicle and the scapula form a kinematic hierarchy
via a ball joint and auxiliary constraints enforce the contact be-
tween the scapula and the thorax. Since we model the spline surface
such that the pose of the scapula satisfies the constraint between the
scapula and the clavicle (i.e., the distance between the acromion
process and the sternoclavicular joint is approximately the same as
the length of the clavicle), it is easy to enforce the constraint be-
tween the scapula and the clavicle using springs. The gray surface
between the scapula and the rib cage in Fig. 4 is the surface swept
by the reference frame of the scapula. The orientations of the frame
at sample positions are drawn on the surface. The red box on the
surface represents the current position and orientation.

Fig. 5 illustrates some of our experiments in creating interesting
mechanisms using spline joints. In Fig. 5(a), each of the three beads
is connected to the parent link through a flower-shaped spline joint.
In this example, the beads slide along the spinning wire frame in a
physically realistic manner in gravity (we can easily enable them to

22:6 • S.-H. Lee et al.

ACM Transactions on Graphics, Vol. 27, No. 3, Article 22, Publication date: August 2008.

(a) Beads-on-a-Wire (b) Globe

(c) SIGGRAPH Joint (d) Deforming Spline Surface Joint

Figure 5: Example mechanisms modeled with spline joints.

spin freely about the curve by inserting a simple rotational joint be-
tween the bead and the spline joint). Similarly, Fig. 5(b) illustrates a
mechanism in which toy airplanes slide along the continental coast-
lines using spline joints. Note that for the “Globe” example, each
control frame is computed such that two of its axes are in the tan-
gent plane of the globe and one of those two axes is also tangent
to the coastal curve. The “Beads-on-a-Wire” example is created in
a similar manner. These examples demonstrate that we can create
spline joints of arbitrary shape.

Fig. 5(c) is a snapshot from the “SIGGRAPH Joint 1” demo in the
accompanying video. In this example, we use spline joints to con-
strain each letter to the surface of the parent letter. The chain of
letters, which is constrained at the top of the letter S, free-falls in
gravity. As we modeled only a single spline joint between a pair of
letters, the contact point of one of the two links is constant while
that of the other is changing. In the second “SIGGRAPH Joint 2”
example in the accompanying video, we allow sliding on both sur-
faces by modeling two spline curve joints between the letters. The
first curve is created from the tangent frames while the second is
created from the inverse of the original control frames.

Fig. 5(d) is an example of a “Deforming Spline Surface Joint”. The
cyan sphere is constrained to slide along a 2-DOF spline surface
joint in a physically realistic manner, subject to gravity. At the same
time, the spline surface joint deforms kinematically.

We performed our experiments on a 2.6 GHz Intel Core 2 CPU
system. The spline joint permits large numerical time steps using
the forward Euler time integration method. In our experiments, the
maximum time step ranges from 20 msec (“Globe”) to 100 msec
(“Beads-on-a-Wire”). Also, the experiments confirm that the spline
joint does not raise the complexity of the dynamics formulation be-
yond O(n). With our unoptimized implementation, the compute
time per time step is 6 msec for the 1-DOF system “Knee” and 49

msec for the 8-DOF system “SIGGRAPH Joint 1”. Since we use
local-support basis splines, the number of control points does not
adversely affect the computational complexity.

8 Conclusion and Future Work

We introduced spline joints to model general scleronomic joints
for multibody dynamics based on the minimal-coordinates formu-
lation. Spline joints enable the accurate modeling of biological
joints, as well as the creation of interestingly intricate mechanisms
for computer graphics. Spline joints can easily be incorporated into
existing dynamics algorithms. Our technique opens up a range of
possibilities in modeling dynamic structures and it nicely avoids the
slower maximal-coordinates-based approach that, anyway, would
not simplify the representation of the scleronomic constraint.

Many complex biological joints of animals (including humans) can
be more accurately modeled using our technique. For example,
we demonstrated that the femorotibial joint and the scapulothoracic
joint can be modeled more accurately using spline joints. We mod-
eled these knee and shoulder examples by eye; more accurate mod-
eling should be possible using medical imaging techniques. In the
case of human joints other than the knee and scapula, the condyloid
joint types (e.g., the wrist) and saddle joint types (e.g., the thumb)
should benefit most from our technique.

Since we use twice differentiable splines in spline joints, our tech-
nique can best be used for modeling “smooth” joints. However, we
believe that sharp corners can be reasonably approximated in most
cases by smooth splines using multiple control frames near the dis-
continuities. If one wants to model sharp corners or cusps using
non-C2-continuous splines, it would be necessary to compute and
apply an appropriate impulse at the discontinuities.

As demonstrated in the “SIGGRAPH Joint 2” example, surface-to-
surface contact can be simulated by multiplying one spline surface
joint with a second “inverted” spline surface joint. Moreover, it is
possible to enforce additional constraints, such as a no-slip con-
straint, by computing constraint forces using Lagrange multipliers.

We did not consider the data fitting problem for multi-DOF joints.
A naive approach would be to apply least-squares fitting to each of
6 splines because, unlike the 1-DOF case, each spline is defined in
Euclidean space. Presumably this coordinate-wise fitting will give
reasonable results; however, it may not be optimal in terms of the
given metric on SE(3). A good problem for future work would be
to develop an optimal data fitting algorithm for multi-DOF spline
joints that respects the metric on SE(3).

In the deforming spline surface joint example (Fig. 5(d)), we de-
formed the surface spline kinematically and the surface itself did
not participate in the dynamic simulation. In future work, however,
there is no reason why we cannot employ dynamic NURBS [Ter-
zopoulos and Qin 1994] to create an physically accurate D-NURBS
surface joint which would deform elastically under the weight of the
ball or any other applied forces.

A Recursive Forward Dynamics Algorithm

For use with our spline joints, we derive a Lie Group theoretic re-
cursive dynamics formulation that extends the one in [Park et al.
1995]. Note that the algorithm is essentially the same as the articu-
lated body method for multiple DOF joints developed in [Feather-
stone 1987]. Our recursive forward dynamics algorithm is O(n) for
tree-type articulated structures.

The articulated inertia J̃i and its associated bias force bi are defined

Spline Joints for Multibody Dynamics • 22:7

ACM Transactions on Graphics, Vol. 27, No. 3, Article 22, Publication date: August 2008.

such that they satisfy the following relation:

fi = J̃iv̇i+bi. (43)

Substituting (14) into (43) and pre-multiplying (43) with STi , we
can decompose q̈i into two parts, one induced by τi and the other
induced by neighboring joints, as follows:

q̈i = Ω−1i
(
τi−STi J̃i(iv̇i−1+ ci)−STi bi

)
, (44)

where ci = q̇Ti ∇Siq̇i + adviui and Ωi = STi J̃iSi. We want to derive
recursive equations for J̃i and bi. This is accomplished by replac-
ing fi+1 in (15) with (43) and substituting (14) for v̇i+1. Hence, we
derive the recursive forward dynamics algorithm for general scle-
ronomic joints as follows:

• Given τi and fe,i
• Update Gi, Si, ∇Si, vi and ci
• Backward recursion:

J̃i = Ji+Ad∗G−1i+1 J̃i+1AdG−1i+1
−Ad∗G−1i+1 J̃i+1Si+1Ω

−1
i+1S

T
i+1J̃i+1AdG−1i+1

bi =−ad∗viJivi− fe,i+Ad∗G−1i+1(J̃i+1ci+1+bi+1)

+Ad∗G−1i+1 J̃i+1Si+1Ω
−1
i+1

(
τi+1−STi+1(J̃i+1ci+1+bi+1)

)
Ωi = STi J̃iSi

• Forward recursion:

q̈i = Ω−1i
(
τi−STi J̃i(iv̇i−1+ ci)−STi bi

)
v̇i = iv̇i−1+ ci+Siq̈i

B Spline Joint Jacobian and Hessian

Elements of the joint Jacobian S = [s1, . . . ,sn] and the Hessian are
computed using the following algorithm:
Require: q

1: si = g1
∂φ1
∂qi
, ∂ si∂q j

= g1
∂ 2φ1
∂qi∂q j

for i, j = 1, . . . ,n

2: for k = 2 to m do
3: ∂ si

∂q j
= gk

∂ 2φk
∂qi∂q j

+Ad−1
egkφk

(
∂ si
∂q j

+ adsigk
∂φk
∂q j

)
4: si = gk

∂φk
∂qi

+Ad−1
egkφk

si

Refer to Section 5.3 for the definitions of the symbols. The com-
plexity of this algorithm is O(n2m), where n is the number of DOFs
of the joint and m is the number of exponentials. In most cases, m
is small (e.g., m= 3 for the 1-DOF cubic spline joint) and n≤ 2, so
this algorithm is efficient.

Acknowledgements

SHL was supported in part by a UCLA Dissertation Year Fellow-
ship. The knee mesh data was created by Marco Viceconti and
is available from www.tecno.ior.it/VRLAB. We acknowledge the
helpful comments of the anonymous referees.

References

ALEXA, M. 2002. Linear combination of transformations. ACM
Transactions on Graphics 21, 3 (July), 380–387.

BARR, A. H., CURRIN, B., GABRIEL, S., AND HUGHES, J. F.
1992. Smooth interpolation of orientations with angular velocity
constraints using quaternions. In Computer Graphics (Proceed-
ings of SIGGRAPH 92), 313–320.

DELP, S. L., LOAN, J. P., HOY, M. G., ZAJAC, F. E., TOPP,
E. L., AND ROSEN, J. M. 1990. An interactive graphics-based
model of the lower extremity to study orthopaedic surgical pro-
cedures. IEEE Transactions on Biomedical Engineering 37, 8
(Aug.), 757–767.

FEATHERSTONE, R. 1987. Robot Dynamics Algorithms. Kluwer
Adademic Publishers, Boston.

GABRIEL, S., AND KAJIYA, J. 1985. Spline interpolation in
curved space. In SIGGRAPH 85 Course Notes for “State of the
Art in Image Synthesis”.

KAPANDJI, I. 1974. The Physiology of the Joints. Churchill Liv-
ingstone, Edinburgh.

KAUFMAN, D. M., EDMUNDS, T., AND PAI, D. K. 2005. Fast
frictional dynamics for rigid bodies. ACM Transactions on
Graphics 24, 3 (Aug.), 946–956.

KIM, M.-J., SHIN, S. Y., AND KIM, M.-S. 1995. A general
construction scheme for unit quaternion curves with simple high
order derivatives. In Proceedings of SIGGRAPH 95, Computer
Graphics Proceedings, Annual Conference Series, 369–376.

KRY, P. G., AND PAI, D. K. 2003. Continuous contact simulation
for smooth surfaces. In ACM Transactions on Graphics, vol. 22,
106–129.

LEE, S.-H., AND TERZOPOULOS, D. 2006. Heads up! Biome-
chanical modeling and neuromuscular control of the neck. ACM
Transactions on Graphics 25, 3 (July), 1188–1198.

MACIEL, A., NEDEL, L. P., AND FREITAS, C. M. D. S. 2002.
Anatomy-based joint models for virtual human skeletons. Pro-
ceedings of the Computer Animation 2002 Conference, 220–224.

MURRAY, R., LI, Z., AND SASTRY, S. 1994. A Mathematical
Introduction to Robotic Manipulation. CRC Press, New York.

PARK, F. C., AND RAVANI, B. 1997. Smooth invariant interpo-
lation of rotations. ACM Transactions on Graphics 16, 3 (July),
277–295.

PARK, F. C., BOBROW, J. E., AND PLOEN, S. R. 1995. A lie
group formulation of robot dynamics. The International Journal
of Robotics Research 14, 6, 609–618.

RAMAMOORTHI, R., AND BARR, A. H. 1997. Fast construction
of accurate quaternion splines. In Proceedings of SIGGRAPH
97, Computer Graphics Proceedings, Annual Conference Series,
287–292.

REULEAUX, F. 1876. Kinematics of Machinery: Outlines of a
Theory of Machines. MacMillan and Co, London.

SHAO, W., AND NG-THOW-HING, V. 2003. A general joint com-
ponent framework for realistic articulation in human characters.
In Proceedings of the 2003 ACM Symposium on Interactive 3D
Graphics, 11–18.

SHOEMAKE, K. 1985. Animating rotation with quaternion curves.
In Computer Graphics (Proceedings of SIGGRAPH 85), 245–
254.

TÄNDL, M., AND KECSKEMÉTHY, A. 2007. A comparison of B-
spline curves and Pythagorean hodograph curves for multibody
dynamics simulation. Proceedings of Twelfth World Congress in
Mechanism and Machine Science (June), 380–387.

TERZOPOULOS, D., AND QIN, H. 1994. Dynamic NURBS with
geometric constraints for interactive sculpting. ACM Transac-
tions on Graphics 13, 2 (Apr.), 103–136.

22:8 • S.-H. Lee et al.

ACM Transactions on Graphics, Vol. 27, No. 3, Article 22, Publication date: August 2008.

