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Multi-contact locomotion that uses both the hands and feet in a complex
environment remains a challenging problem in computer animation. To
address this problem, we present a contact graph, which is a motion graph
augmented by learned feasibility predictors, namely contact spaces and an
occupancy estimator, for a motion clip in each graph node. By estimating
the feasibilities of candidate contact points that can be reached by modifying
a motion clip, the predictors allow us to find contact points that are likely
to be valid and natural before attempting to generate the actual motion for
the contact points. The contact graph thus enables the efficient generation of
multi-contact motion in two steps: planning contact points to the goal and
then generating the whole-body motion. We demonstrate the effectiveness of
our method by creating several climbing motions in complex and cluttered
environments by using only a small number of motion samples.
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1. INTRODUCTION

Enabling virtual characters to locomote using both the hands and
feet in a complex and cluttered environment, such as climbing up
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cliffs and passing through holes, remains a challenging problem
in computer animation research. Since one needs to deal with the
contact and penetration against the environment induced by the
character’s motion, many existing animation techniques assuming a
collision-free environment cannot be easily applied to this problem.

In general, such a multi-contact locomotion problem has been
addressed by randomized search-based approaches that adopted
two-step planning: First, candidate contact points are sampled on
the surface of the environment and then local planning is performed,
in which the quality of the contact points is examined by generating
a motion that reaches the contact points. While the quality of contact
points and motions depends on many factors, they should at least
satisfy the following conditions:

(1) Kinematic feasibility: The character should be able to reach the
contact points while satisfying joint limits.

(2) Physical feasibility: The motion should be balanced and not
require excessive force.

(3) Geometric feasibility: The character’s body should not pene-
trate the environment.

In addition, the motion should look natural and appropriate for lo-
comotion. Since the local planning step consumes a considerable
amount of computation to test these feasibilities, the motion gen-
eration process slows down significantly if many candidate contact
points examined turn out to be infeasible. Therefore, it is critical
to increase the hit rate of sampled candidate contact points for the
efficient generation of multi-contact motions.

Sampling around the captured motion data is an effective way
to increase the chances to find feasible and natural motions. How-
ever, multi-contact motion data are not widely available, because
it is difficult to capture motions that interact with the environment,
for example, due to occlusion. In fact, the sheer diversity of the
environment shapes makes it nearly impossible to prepare enough
motion data that cover a wide range of environments. Thus, it is
important to be able to modify the captured motion data and make
the data applicable to different environments, but the increased dif-
ference between the original and modified motions may degrade the
feasibility and naturalness.

In this article, we present a method for creating multi-contact
locomotion based on a motion graph constructed by a small number
of motion capture sequences. To support multi-contact planning,
our motion graph is constructed in the manner that a node of a
graph represents a unitary change in contact configuration. Thus,
we call our motion graph the “contact graph.”

The key contribution of our method is the precomputation of
range of feasible motions that can be obtained by modifying a mo-
tion clip stored in a node in the contact graph. In particular, the
feasible range is stored in forms that can efficiently test candidate
contact points. One is the contact space, which represents the space
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of feasible contact points that can be obtained from a motion clip.
The points included in the contact space satisfy the kinematic and
physical feasibilities. In addition, a contact space is modeled with a
probability distribution function that reflects the naturalness of the
contact points. The other form is the occupancy estimator, which
estimates the space occupied by a motion to make candidate contact
points and thus allows us to estimate the geometric feasibility of
contact points. To summarize, each node of a contact graph pos-
sesses a motion clip, as well as corresponding contact spaces and
an occupancy estimator that enable the examination of the feasibil-
ity and naturalness of contact points before generating the actual
motions for the contact points.

In order to use a motion clip for different environments and con-
tact points, we need to modify it such that it reaches target contact
points while preserving the original motion style. Researchers have
developed many approaches for motion modification in differing
qualities and complexities, from conventional inverse kinematics
to dynamic space-time optimization. Among these approaches, a
motion deformation method based on geometric mesh deforma-
tion techniques has the advantages of smooth change of motion,
preserving local styles, and fast computation by solving a linear
system as opposed to solving iterative optimization carried out by
inverse kinematics. We follow the Laplacian motion deformation
method [Choi et al. 2011] in which a mesh representing a mo-
tion is generated and deformed using the Laplacian mesh editing
technique [Lipman et al. 2004]. As noted by Choi et al. [2011],
applying the Laplacian mesh editing to a three-dimensional (3D)
motion mesh brings about undesirable results, because it modifies
the mesh by solving a linear system.

An additional contribution of our work is a new variant of
the Laplacian motion deformation method. Our proposed method
achieves reasonable deformation of motion in two steps: It first
finds the end effector paths by using Laplacian curve editing and
then finds paths for the whole joints by using Laplacian mesh editing
with the end effector paths as boundary constraints.

We assessed the effectiveness of our contributions by creating
multi-contact locomotions in a number of test environments by us-
ing only a few motion clips for climbing. While the key components
of our contributions can be naturally applied to any motion plan-
ning frameworks based on a randomized search, we implemented
the greedy best first search method [Russell et al. 2003] that ex-
plores the environment in a greedy manner. In particular, we first
perform contact planning that finds a contact sequence for reaching
the target, and then carry out the local planning that creates the
actual movement of the character.

The remaining part of the article proceeds as follows. After re-
viewing related researches to our work in Section 2, we first present
a method to modify a motion clip in Section 3. Section 5 details the
contact graph and the procedure to create it, and Section 6 shows
how the contact graph is used to generate multi-contact locomotion.
We investigate the effectiveness of the presented method through
a number of experiments in Section 7 and discuss its properties,
limitations, and future work in Section 8.

2. RELATED WORK

Generating a virtual character’s motions to perform given tasks by
interacting with an environment is a central problem in computer an-
imation research. Thus, numerous approaches have been developed
in this regard. In this section, we review approaches closely related
to our proposed method for creating whole-body multi-contact
locomotion.

Motion Graph: By defining valid transitions between motion
clips acquired by motion capture devices, motion graph-based meth-
ods efficiently sequence motion clips to create realistic motions that
accomplish given tasks while satisfying constraints such as colli-
sion avoidance [Kovar et al. 2002; Lee et al. 2002]. Including more
motion clips and increasing their connectivity in the graph expands
the range of producible motions but also increases memory usage
and search time. Thus, researchers have developed techniques to
increase motion generation capability while suppressing the com-
plexity of the motion graph. An effective method is to construct a
motion graph to support the interpolation of motion clips [Safonova
and Hodgins 2007]. Parameterizing motion clips with respect to
their spatial features (e.g., location of foothold) allows for the ef-
ficient creation of motions by blending motion clips per new input
parameter [Wiley and Hahn 1997; Kovar and Gleicher 2004; Shin
and Oh 2006]. A randomized search around a motion clip can adapt
to new constraints while preserving the original style [Shapiro et al.
2007]. More complex mobile-manipulation behaviors can be gener-
ated by combining heterogeneous motion-generation methods such
as motion graph-based and algorithmic approaches [Mahmudi and
Kallmann 2015].

We also extend the range of reproducible motions by randomly
sampling target contact points and modifying the motion clip. A
novel aspect of our method is that we pre-compute the range of
possible motions obtained from a motion clip by representing them
with the probability distribution of the contact points. By sampling
points with high probability, our method increases the chance to
create natural motions.

Complex Environment: A cluttered or dynamic environment
adds to the difficulty in motion generation as one needs to deal
with collisions with the environment or moving obstacles. In this
case, extracting contact-related information from the motion and the
environment helps to find motions applicable to the given environ-
ment [Kapadia et al. 2016]. If a suitable motion sample is given for
an environment, then motion editing techniques can generate new
motions of a similar style for a different body scale or a modified
environment shape [Ho et al. 2010; Lee et al. 2006].

Randomized search algorithms such as a probabilistic roadmap
(PRM) planner or a rapidly exploring random tree (RRT) have
shown good performance for the problem of planning motions
of high-degrees-of-freedom robots [Latombe 1991; Choset et al.
2005]. Combined with motion samples, randomized search algo-
rithms can produce realistic character locomotion [Choi et al. 2003]
as well as hand manipulation [Koga et al. 1994; Yamane et al. 2004;
Ye and Liu 2012]. Real-time locomotion against the dynamic obsta-
cles has been achieved by constructing and searching for high-level
behavior graphs [Lau and Kuffner 2005] or by training controllers
with reinforcement learning [Levine et al. 2011].

For a severely cluttered environment, deforming motion samples
may be necessary on top of path planning. By extending the motion
editing technique in Kim et al. [2009], Choi et al. [2011] developed
a 3D Laplacian motion editing method to modify a motion clip
to eliminate penetration while reaching target contact points. We
adopt their Laplacian motion editing framework but develop a new
variation of 3D Laplacian motion deformation. For the case of a
large deformation of environment, Tonneau et al. [2016] developed
a method to reposition original contact points to preserve physical
relationship with the environment.

Multi-Contact Motion: While many motion planning methods
concern the avoidance of collision with complex environments, the
problem of multi-contact motion generation confronts the challeng-
ing task of generating motions that can make contact with arbitrary
points on the surface of the environment with both the hands and
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feet. Researchers have developed randomized search-based meth-
ods for this problem [Escande et al. 2013; Bouyarmane and Kheddar
2011]. These methods generate sample candidate contact points on
the environment and then validate the points through local planning.
If the contact points and motions are sampled at random, then the
resulting motion, although feasible, often looks unnatural. Hauser
et al. [2008] achieved a more realistic motion and faster performance
by sampling contact points and motions around motion primitives.
Lengagne et al. [2014] solved semi-infinite programming to obtain
optimal multi-contact motions.

We also follow the two-step contact-before-motion approach.
The distinctive feature of our method lies in the contact planning
step. By modeling the probability of contact points and estimating
occupancy due to the contact points, our contact planner finds the
contact points that are likely to be achieved by a character, even
before going through local planning.

Multi-contact motions have also been studied in physics-based
animation research. Liu et al. [2010] achieved multi-contact charac-
ter motion such as rolling by sampling parameters for the controller.
Mordatch et al. [2012] showed that discrete motions such as multi-
contact locomotion can be created with space-time optimization by
involving continuous variables that indicate contact with a particu-
lar end effector and the environment. Jain et al. [2009] proposed an
optimization-based framework that can generate various interacting
movements responsive to dynamically varying environment such as
climbing, swinging, and leaning.

3. MOTION DEFORMATION

Since the motion deformation method is a basic tool used in our
multi-contact locomotion generation framework, we discuss it first
in this section.

The Laplacian mesh editing method has proven to be effective
in modifying motions as well [Kim et al. 2009], but applying the
Laplacian mesh editing to a 3D motion mesh may result in undesir-
able results due to its linear transformation nature. For 3D Laplacian
motion editing, Choi et al. [2011] proposed a method that applies
2D Laplacian editing separately in horizontal and vertical planes.
This method is effective for cases where the complete poses at the
initial and final frames serve as boundary constraints. However, in
our case, the constraints need to be given only for the end effec-
tor positions, making it necessary to develop a different method.
Our approach for this is to first find the end effector paths by us-
ing Laplacian curve editing and then to find paths for the whole
joints by using Laplacian mesh editing with the end effector paths
as boundary constraints.

Figure 1 compares our method with a motion mesh obtained
by applying the Laplacian editing to the whole 3D mesh (dubbed
the general 3D Laplacian motion editing in this article). When the
target final position of the right hand is changed (green arrow) for an
original motion clip (Figure 1(b)), the general 3D Laplacian motion
editing method (Figure 1(a)) fails to retain the rigidly-deforming
nature of Laplacian editing and generates a steep arm rotation near
the end frame (red line). The non-uniform edge lengths of the hand
trajectory shown in the rectangle mean the general 3D Laplacian
motion editing may create a large variation in motion speed. We
suspect that this is largely due to the structure of the motion mesh
that is different from the typical 2D manifold mesh for geometric
modeling. In contrast, our method better preserves the style of the
original motion as shown in Figure 1(c). Figure 2 shows more
examples obtained by the proposed motion deformation method.

Note that this two-step approach may bring additional benefits
for the randomized motion search approach: Since the end effectors

Fig. 1. (a) Laplacian deformation with point constraints. (b) Original mo-
tion. (c) Two-step Laplacian deformation (our method). Solid circles repre-
sent the new target contact points for the right hand.

Fig. 2. More examples of our motion deformation method. The original
mesh and its deformed mesh are shown in green and blue, respectively. Blue
dots indicate the new target contact points.

have a higher chance to penetrate into the environment than other
body parts, it should be computationally more efficient to search for
collision-free end effector paths first before dealing with the entire
joints.

3.1 Laplacian Motion Deformation

We first construct a mesh M such that vertices are positioned at the
joint locations at every frame, and the edges are created between
temporally and hierarchically adjacent vertices. For instance, vi(t),
a vertex for the joint i at time t , is connected to the vertices vi(t −1),
vi(t + 1), vp(i)(t), and vc(i)(t) with p(i) and c(i) indicating parent
and child joints, respectively. Figure 1(b) shows an example mesh
drawn in a wire frame.
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Fig. 3. Overall flow of our proposed method.

The idea of Laplacian mesh deformation is to find the displace-
ment of unconstrained vertices vi such that their differential coor-
dinates are preserved after deformation [Lipman et al. 2004]:

δvi − 1

deg(vi)

∑

(i,j )∈M.edge

δvj = 0, (1)

where δvi denotes the difference between the original and new
positions of vi . We can construct a linear system of Laplacian matrix
by stacking Equation (1) for all free vertices vi , and solve for vi given
the displacement of the constrained vertices.

End Effector Paths. Laplacian curve editing is performed to gen-
erate a new end effector path to reach the new contact point. Specif-
ically, we set the boundary constraints specifying the displacement
of the end-effector positions at the initial and final frames to satisfy
the new contact points. We then find the positions of the vertices in
the end effector paths such that they satisfy

δvi(t) − 1

2
(δvi(t − 1) + δvi(t + 1)) = 0 (2)

by solving a corresponding linear system of Laplacian matrix.

Internal Joint Paths. Next, paths of the whole-body joints are
determined by deforming mesh M with the Laplacian mesh defor-
mation method (Equation (1)) under the constraints specified by
the end effector paths obtained from Equation (2). Examples of
deformed meshes are shown in Figures 1(c) and 2.

3.2 Inverse Kinematics

Although the Laplacian motion editing method effectively solves for
the joint paths satisfying the new contact points while preserving the
original motion style, it does not take into account the bone length
constraints. Therefore, we find the feasible motion by solving the
inverse kinematics that best follows the joint paths. The Inverse
Kinematics (IK) is performed at every frame by solving for joint
coordinates q that minimize the following cost function:

∑

i

αi ||vM
i (t) − vi(q(t))||2 + λ||q(t)||2, (3)

where vM
i (t) denotes the desired position of the joint i at t obtained

by Laplacian motion editing, and vi(q(t)) is its position due to
the joint coordinates q(t). Larger values are given to α for the
end effectors than to internal joints to give higher priority to the
end effectors, and λ is the weight for the regularizing term. The
Levenberg-Marquardt algorithm found the optimal joint coordinates
q(t) within 10ms per frame on average (Table II).

4. SYSTEM OVERVIEW

Our method consists of a preprocessing stage that constructs the
contact graph from a set of multi-contact motion data and an online
stage that generates multi-contact motion by following a given path
in the complex environment. Figure 3 shows the overall flow of the
proposed method.

In the preprocessing stage, we only deal with motion data without
any information on the environment. In particular, the preprocessing
stage segments the motion data into a set of motion clips based on
contact configurations (Section 5.1). Each motion clip constitutes a
node of the contact graph. We construct contact spaces that represent
the contact points a motion clip can make (Section 5.2), and train the
occupancy estimator to predict the space consumed by the character
(Section 5.3).

In the online stage, when an environment and target path are given
as input, a sequence of contact points is first planned such that it
minimizes the cost of several criteria including contact feasibility,
collision avoidance, and path following (Section 6.2). Next, whole-
body motion is created as output by first planning joint paths by
using Laplacian motion deformation and then performing inverse
kinematics (Section 6.3).

5. CONTACT GRAPH

A contact graph G = (N, E) is a directed graph with a set of nodes
N and edges E. We will call a node n ∈ N a contact node and it has
the following attributes:

• Contact motion clip
• Contact configurations
• Contact space
• Occupancy estimator
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Fig. 4. Contact motion clips are segmented at the frame when the contact
state of any one of four end effectors switch from contact to free. Clips #0
and #1 are divided when the character disengages contact at the left foot.

We will explain the properties of each attribute and the process to
obtain them in the following subsections.

5.1 Contact Motion Clip

A contact motion clip is a motion clip acquired by segmenting a
motion sequence according to the contact state of a character. The
contact motion clip also serves as a unit to construct a node of the
contact graph. Assuming that a character contacts the environment
with only the hands and feet, we collect contact motion clips by
using the following steps.

For every frame of input motion data, we determine the state
of each end effector as either contact or free based on its velocity
through the method presented in the Appendix. Then, we cut the
motion data right before the frame in which any one of the end
effectors goes through contact release (i.e., state changed from con-
tact to free). Thus, every contact motion clip starts with a contact
release of at least one end effector. The rationale for this choice is
that a contact release can be considered as a cue to move toward a
new target point.

In our experiment, we used a total of 4 motion samples for climb-
ing motions collected from CMU (mocap.cs.cmu.edu) and Mixamo
(www.mixamo.com) motion data libraries. The motion samples
were segmented into 30 contact motion clips, among which we
picked 18 clips that contained multi-contact motions. The lengths
of motion clips ranged from 47 to 166 (104 on average).

Subsequently, each motion clip is automatically annotated ac-
cording to its contact configurations. The annotation includes the
contact configurations at the initial and final frames as well as the
contact transition. The contact configuration includes a list of con-
tacting end effectors at the initial and final frames, and the contact
transition attribute stores the list of end effectors that have moved
and contacted new points during the motion clip. Thus, the initial
states of end effectors in contact transition can be either free or
contact, but their final states must be contact. For instance, the clips
#0 and #1 in Figure 4 will be annotated as follows:

• Clip #0
—Initial contact configuration: {LF1}
—Contact transition: {RH}
—Final contact configuration: {RH, LF}

• Clip #1
—Initial contact configuration: {RH, LF}
—Contact transition: {LH, RF}
—Final contact configuration: {LH, RH, RF}

11R: Right, L: Left, F: Foot, H: Hand.

Fig. 5. For the stability check, contact points and center of mass are pro-
jected vertically to the level plane (ground) and verified if the projected
CoM is included in the convex hull made by the projected contact points.
Suitable width (length of the foot) is given to two-point contact (c). This
stability check is valid regardless of the actual geometry of the environment
except that friction is ignored.

From the annotation for the Clip #0, we can understand that LF
is kept fixed at a point throughout the motion clip, RH is initially
free but makes contact during the motion clip, and all other end
effectors maintain a free state. For Clip #1, RH is kept fixed at a
point, LF leaves a contact point, and both LH and RF make new
contacts. Note that the final contact configuration of the previous
motion clip is always the same as the initial contact configuration
of the next motion clip.

We use the annotation not only to construct a contact graph, but
also to modify the motion clip as explained later.

5.2 Contact Space

The contact space of a motion clip is the space of contact points that
end effectors can make by modifying the motion clip. Of course, the
size of a contact space increases as we allow for more modifications
of a motion clip, but this may hurt the style of the motion clip.
Thus, we create a contact space by sampling valid contact points
near the contact point of the original motion clip. Specifically, we
perform the following procedure repeatedly: We pick new candidate
contact points for the end effectors included in the initial or final
contact configurations by randomly sampling points within 50cm
from the original points. Next, we perform motion deformation
and verify whether the resulting motion is feasible by checking its
kinematic and physical feasibilities. Balance check is performed
by examining whether the ground projection of the center of mass
(CoM) is included in the convex hull made by the ground projection
of the contact points (see Figure 5). Joint torque limit is tested by
computing the inverse dynamics against the static poses in the same
way as in Kang and Lee [2014]. In principle, the feasibility check
should be performed to every frame of the motion, but checking with
only the initial and final frames was enough to sift out unnatural
motions in our experiment.

We collect 300 motion samples for each motion clip, and con-
struct contact spaces for each contacting end effector with the con-
tact points obtained from the motion samples.2 All these contact
points are feasible, but we give higher priority to the points in the
middle, because they require less deformation from the motion clip.
Therefore, we model a contact space with a 3D Gaussian distribution

2Note that this is somewhat relaxed approach for collecting contact points.
Exact method would be performing exhaustive examination such that, for
a motion clip, any combinations of contact points in contact spaces per
contacting end effector are guaranteed to be feasible.
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Fig. 6. Sampled contact points of a pose at a terminal frame (left) and
the Gaussian distributions obtained from the points (right) for two example
motion clips. Color visualizes probability density at the position: blue (0)→
red (1), with alpha value also set to the probability density.

N (μ, �) in which the mean μ and the covariance � are computed
from the sample points. Figure 6 shows the example distributions
of the contact spaces. μ and � are expressed with respect to the
reference frame of the motion clip.

5.3 Occupancy Estimator

An occupancy estimator estimates the space occupied by a character
given target contact points. For this, we create an occupancy grid for
each contact node such that the grid encloses every motion sample
(Figure 7(a)). An occupancy estimator sets value yi ∈ [0, 1] to each
voxel i as its spatial ratio occupied by a character,

y = f (x), (4)

where the vector x represents the contact points of the initial and
final configurations. The dimension of y is the number of voxels.
For instance, yi = 0.3 means that 30% of voxel i is swept by a
character’s body (Figure 7(b)). The occupancy value for a voxel
is measured by subdividing the voxel into 10×10 sub-voxels and
counting the number of sub-voxels that collide with any body part
in any frame.

We use machine-learning algorithms to train an occupancy es-
timator. Once trained, the occupancy estimator will estimate the
likelihood of collision with contact points at a certain location in

Fig. 7. (a) Occupancy grid that encloses all motion samples is created for
each contact node. (b) Occupancy is measured as a swept volume by each
motion sample.

Fig. 8. Visualization of estimated occupancy for test contact points. Red
and blue dots denote contact points at initial and final frames, respectively.
(a) A motion clip with the right foot transition. (b) A motion clip with the
left foot and right hand transitions.

the environment much faster than the local planning process. We
train the occupancy estimator for each node of a contact graph.
The dimension of y is normally several thousands, but voxel values
are highly correlated with those of neighboring voxels. We reduce
its dimension by using principal component analysis (PCA) and
modeling the occupancy as follows:

y = P · g(x) + ȳ, (5)

where ȳ denotes the mean of y, a matrix P includes the principal
components of occupancy vectors, and g(x) is the weight for every
principal component. In our experiment, the number of principal
components was set to 50.

We model g(x) with a Gaussian process [Rasmussen 2004] but
other function approximators, such as a radial basis function net-
work, would work well. Specifically, we employ a noise-added
squared exponential function as the kernel function of the Gaussian
process. We use 100 sample motions collected for creating contact
spaces to model g(x) and the remaining 200 samples for validation.
Figure 8 shows examples of occupancy values for the given contact
points.

Table I shows the error rates of the motion clips measured as
Equation (6). The second column shows the average error rate for
all voxels, and the third column shows the average error rate for the
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Table I. Error Rate of Learning Occupancy Space
Contact Non-zero voxels only

motion clip All voxels (PCA error)
average 0.0170 0.1145 (0.0568)
std. dev. 0.0023 0.0243 (0.0140)

voxels with non-zero values only. The numbers in parenthesis are
the average reconstruction errors of the 100 sample motions due
to the dimensionality reduction using PCA. The third row shows
the standard deviation of the errors. Table I shows that our method
estimates the occupancy values with reasonably low error rates,
0.017 on average.

Error rate =
∑N

i=1 |yi − ytrue
i |

N
(6)

Memory consumption: For the contact spaces, we store only the
mean and covariance matrix for each contact point in each node;
thus, the memory consumed by the contact spaces is negligible.
For the occupancy estimator, P and ȳ for PCA, and the training
data and hyper parameters for the Gaussian process are stored.
P ∈ R

S×50 and ȳ ∈ R
S , where S is the grid size ranging from

4,000 to 5,700 in our experiment. For storing the training data, we
store (xi, gi) (i = 1 . . . 100), where the dimension of xi is 3×(# of
contact points) and gi ∈ R

50. Therefore, roughly 256K numbers are
stored in each node for the occupancy estimator.

5.4 Graph Construction

So far, we have discussed the attributes of a node constituting a
contact graph. We construct a contact graph as a directed graph
by creating an edge ni → nj if the following requirements are
satisfied:

(1) Final contact configuration of ni is the same as the initial contact
configuration of nj .

(2) The contact transitions of ni and nj are disjoint.

The second condition prevents the repetitive transition of the same
body part. For instance, if the right hand has changed the contact
point, then we do not allow it to take another contact point in the
right next step. Note that when we create edges, we only consider
the contact configurations without dealing with pose similarities
between the motion clips. This was done to increase the connectivity
of the graph as the number of nodes in our graph is rather small.
A larger contact graph would benefit from considering the pose
similarity for edge construction.

6. ONLINE MOTION GENERATION

Our method for generating multi-contact motion consists of two
stages. Given the environment and a path to follow, contact planning
is first performed to find the sequence of contact nodes and their
contact points to reach the goal. Contact space and the occupancy
estimator are used in this stage to find good contact points with
high probability and less chance of penetration. Next, whole-body
motion is generated to realize the planned contact points.

Detailed explanation of the method will be given after presenting
how we process the environment data for efficient motion planning.

6.1 Environment Processing

In order to test collision and measure penetration efficiently between
the character and the environment, we make it possible to compute
the signed distance of a point to the nearest surface by creating an

Fig. 9. Environment grid and signed distance field.

environment grid, a 3D grid enclosing the environment. Given the
surface meshes for the environment, we densely sample points on
the surfaces and find surface voxels that include the points. Each
surface voxel is given a normal direction estimated from the mesh.

For each voxel xi we compute its signed distance sd(xi). For this,
we first set the signed distance of surface voxels to zero and itera-
tively fill the signed distances of adjacent voxels by incrementing
(decrementing for interior voxels) its distance by 1. Figure 9 shows
an example of the environment grid and the signed distance field.

6.2 Contact Planning

Our motion generation starts with contact planning, in which we
find the optimal sequence of contact nodes and contact points to
follow the target path. The essential element for motion planning is
an appropriately defined energy (or cost) function of a motion unit
with respect to a particular position in the environment. Using the
energy function, motion planners find an optimal motion sequence
that minimizes the total energy. For a contact node n with the
transformation matrix T ∈ SE(3) and a set of contact points C =
{c1, . . . , cN } (ci ∈ R

3), we define its energy as follows:

E(T , C) = w1fn + w2fc + w3fp, (7)

fn = 1.0 − 1

N

N∑

i=1

N (T −1ci |μi, �i), (8)

fc =
∑

i for sd(xi )<0

|sd(xi) · y(T −1xi)|, (9)

fp = disp + disd , (10)

where wi are the weights and N is the number of contacts. y(T −1xi)
denotes the occupancy value that corresponds to the position xi of
the environment voxel i.

fn contributes to the increase in the probability of contact points.
fc measures the severity of penetration of the motion for the con-
tact points. For this, we first compute the occupancy for the input
contact points by using Equation (5) and find the occupancy voxels
that collide with the interior voxels of the environment grid. fc is
measured as the sum of these occupancy values y(T −1xi) weighted
by their penetration depths sd(xi). fp measures how well a contact
node follows the target path. For this, we identify a local target point
as a path point 1m from the current position. disp is the distance
from the center of contact points to the local target point, and disd

is the angle between the direction to the local target point and the
moving direction of the character, which is estimated by the center
of the contact points. We empirically set w1 = 0.25, w2 = 0.5, and
w3 = 0.25.
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6.2.1 Optimal Contact Points. As Equation (7) is generally not
a continuous function for a non-continuous environment, we use
Covariance Matrix Adaptation Evolution Strategy (CMA-ES), a
derivative-free optimization algorithm, for finding an optimal T
and C that minimize Equation (7). More specifically, as the optimal
C largely depends on T , we perform two-step optimization:
The CMA-ES algorithm performs sampling on T , and for each
sample T , we determine the optimal C by using Algorithm 1. The
parameters of the CMA-ES algorithm are set as (population size =
100, standard deviation = 1.0, maximum iterations = 100, stop
fitness = 0.2).

ALGORITHM 1: Find Optimal Contact Points and Energy of a
Node
Input: Transformation matrix T
Output: C, E

1: C ← ∅

2: Transform Contact Spaces according to T
3: for all contact space N (μi,�i) do
4: for all surface voxels xj near μi do
5: if IsValid(xj ) = true then
6: Compute fn,j ← N (xj |μi,�i)
7: if fn,j > f max

n,i then
8: f max

n,i ← fn,j

9: ci ← xj

10: C ← C ∪ {ci}
11: Compute fc and fp for C
12: E ← w1fn + w2fc + w3fp

In our experiment, surface voxels within 80cm from the mean of
each contact space are considered (line 4 of Algorithm 1). A surface
voxel xj is validated (line 5) if its surface normal is within 60◦ from
the up-vector and is visible from the character. The visibility is
examined by the intersection test between the environment and a
line segment connecting the voxel and the head position at the initial
frame of the motion clip.

In principle optimal C should be determined by considering all
energies fn, fc, and fp , but we determine the optimal C only with
respect to the contact probability fn and ignore the effects of fc, fp .
This choice was made for computational performance, because
repetitive call of occupancy generator may slow down the con-
tact planner significantly. Therefore, the time complexity of finding
the optimal contact points is proportional to the number of tested
voxels and number of contacting end effectors.

6.2.2 Contact Planning Algorithm. We perform contact plan-
ning by using the energy function determined by Algorithm 1 to
obtain an optimal contact sequence. An element Q of the contact
sequence has the following attributes: Q = {n, T , C}, where n is
the contact node, T is transformation matrix, C is the contact points
(C = Cinit ∪ Cfin, where Cinit denotes the contact points for the
initial contact configurations and Cfin final configurations). While a
globally optimal path could be obtained by well-known algorithms
such as A* search algorithm, we verified the effectiveness of our
technique by implementing the greedy best first search (GBFS) al-
gorithm [Russell et al. 2003], which finds a locally optimal path.
Note that the contact spaces and occupancy estimators are indepen-
dent of search algorithms. They can also be used for the shortest
path algorithms such as A* or Dijkstra’s algorithms.

Algorithm 2 shows our pseudocode for the contact planning with
GBFS, which finds a node’s successor node in the increasing order
of the energy in a recursive way. To find the very first node at the

starting point of the path, we evaluate every node in the contact
graph and find optimal T , Cinit, and Ctran (contacts in contact transi-
tion). Except for the starting node for which both Cinit and Ctran are
unknown, we find only Ctran and set Cinit to be Cfin of the previous
node. The initial guess for the optimal T (line 7) is determined
such that the distance from the mean of each contact space to the
contact points obtained from the previous node is minimized. In our
experiment, the threshold (line 9) was empirically set to 2.0.

ALGORITHM 2: NextBestContact
Input: Contact Graph G, User given path P , Current node n, Initial

contact points Cinit

Input: Q: current element from which to find remaining contacts
1: if Q.Cfin reached the goal then
2: ContactSequence.push front(Q)
3: return true
4: NodeList ← ∅ {storage for the list of node}
5: for all ni ∈ N adjacent to Q.n do
6: Qi.n ← ni

7: Find initial Qi.T using Q.Cfin

8: Run CMA-ES to find optimal Qi.T , Qi.Ctran, Qi.E
9: if Qi.E < threshold then

10: NodeList.push back(Qi)
11: Sort NodeList in increasing order of E
12: while NodeList is not empty do
13: Qc ← NodeList.pop front()
14: Result = NextBestContact(Qc)
15: if Result = true then
16: ContactSequence.push front(Q)
17: return true
18: return false

6.3 Contact Motion Generation

We have obtained a sequence of contact nodes, their transformation
matrices, and contact points from the contact planning stage. Next,
the motion generation stage computes the whole-body motion of a
character that follows the contact sequence. The motion deformation
process in Section 3 is used again for this purpose, with some
augmentations to the Laplacian motion deformation as explained
now. Recall that in the preprocessing stage Laplacian deformation
is performed under constraints specified by contact points. In the
online stage, to ensure the smooth transition of joint paths across
contact changes, we impose additional constraints such that the joint
positions at the initial frame of a contact node is the same as their
final positions in the previous contact node.

Note that the contact planning stage selects the contact node that
is less likely to penetrate into the environment, but still it is not
guaranteed. Therefore, we examine whether the joint paths pene-
trate the environment after Laplacian motion deformation, and if
so, we add a step to resolve the penetration. Choi et al. [2011] pre-
sented an effective solution that iterates Laplacian motion editing
by adding constraints for penetration elimination. Similarly, we take
an iterative collision resolving approach. At each iteration, we find
the deepest penetrating joint path and obtain a modified collision-
free path that is close to the original path (Figure 10). For the path
modification, we identify two control points that equally divide the
path into three segments and solve the Laplacian path editing un-
der additional position constraints specified by the new positions of
the control points. We employ the CMA-ES algorithm for finding
the optimal positions of the control points, with parameters set as
(population size = 11, standard deviation = 5.0, maximum iter-
ations = 100, stop fitness = 1.0). Once the collision-free path is
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Table II. Compute Time for Each Experiment
# environment voxel size contact planning/ joint path/node IK/frame total time

voxels (cm) # contact nodes # frames node (s) (s) (ms) (s)
Cliff 233K 11.2 7 911 2.7 0.01 8.4 26.6
Tree 2231K 8.4 16 1989 4.7 0.1 9.2 93.0

Rings 813K 3.3 10 1114 20.8 3.2 9.8 250.9
Tunnel 126K 11.2 17 1884 3.4 7.4 7.6 198.2

Contact planning/node: average time for finding optimal contact points per node, measured for the nodes in the found optimal path. Joint path/node: average time
for generating joint paths given the contact points, including the collision resolving step. IK/frame: average time for solving inverse kinematics per frame.

Fig. 10. Our collision resolution scheme. If a joint path (red) penetrates
into an environment (a), then two control points (blue dots in the middle) are
selected for the Laplacian path editing. Initial and final points are fixed and
given as boundary constraints (b). The CMA-ES algorithm finds optimal
positions for the control points that make a collision-free joint path as close
as possible to the original path ((c) and (d)).

obtained, full-joint paths are recomputed with this resolved path
fixed, and collision check is performed again to find next pene-
trating joint path. Finally, the inverse kinematics in Section 3.2 is
performed to create the actual movement of the character.

7. EXPERIMENTS

We assessed the effectiveness of our method for generating multi-
contact motions in several environments that have complex surfaces
or narrow passages. The total DoFs of the character is 96 with each
joint modeled as a ball joint.

Complex Environment Surface

Figure 11 shows each step of online motion planning. Given the
environment and a target path (Figure 11(a)), the motion genera-
tor searches for a sequence of contact nodes to follow the path.
Figure 11(b) shows the contact spaces of the contact sequence in
different color per end effectors. Red circles denote the positions of
the means of Gaussian distributions. Figure 11(c) shows the occu-
pancy values at each voxel estimated by the occupancy estimator,
given the contact points shown in Figure 11(d). Figures 11(e) and
(f) show the joint paths obtained by the motion deformation pro-
cess and the final motion after performing inverse kinematics. The
appropriateness of the contact points and the naturalness of the re-
sulting motions are better evaluated by watching the accompanying
video.

Figure 12 shows another example of complex environmental sur-
faces. The input path is quite challenging to follow closely using the
limited range of motion clips in our experiments. Our method finds
a motion that successfully climbs up a tree while allowing some
distance from the input path.

Since our motion graph contains only moderately climbing mo-
tions and the motion planner gives high preference to the contact
points near the mean of the contact spaces, making extreme mo-
tions such as fully extending the limbs would be difficult to achieve,
which is often necessary to climb a challenging cliff. A straightfor-
ward way to generate such motions in our framework would be to
expand the motion graph to contain far-reaching motion clips.

Narrow Passage

Figure 13 shows an example that initial joint paths obtained from
Laplacian motion deformation penetrated into the environment
(Figure 13(b)) while the character passes through a hole. When
penetration is detected, the joint paths are further adjusted to re-
move the collision as shown in Figure 13(c).

To investigate the extent to which the initial paths can be modified
by our collision handling method, a climbing motion was created in
a tapered cave as shown in Figure 14. The height of the cave could
be reduced to approximately 30% of that required by initial paths
given by Laplacian motion deformation.

Figure 15 shows a motion generated in an environment with
non-continuous environment surfaces and a narrow passage. Recall
that we checked for visibility in the validity test for a contact point
(Algorithm 1, line 5), which was critical for an environment like this
where the contact points on unreachable surface of the environment
(e.g., outer surface of the rings) could otherwise be confirmed valid.

Table II shows the complexity and the computation time for each
test shown in the accompanying video. As can be seen from the table,
the motion planning time is affected by the voxel size, collision
objects near the given path, and the path length. We performed the
experiments on a desktop computer with an Intel Core i7 at 3.50GHz
CPU. We implemented the method in a single-threaded program,
and there is much room for speed improvement by parallelizing the
program.

Note that the time for contact planning in a “rings” environment
(Figure 15) is significantly larger than other test cases because
its voxel size is smaller, and thus, more voxels are checked by the
contact planner. Increasing the voxel size improves contact planning
time yet decreases the accuracy of the collision test.

Comparisons

In order to validate the usefulness of the contact spaces and occu-
pancy estimators, we compared four scenarios in an environment
with obstacles as shown in Figure 16.

Figure 16(a) shows the joint paths and the character poses cre-
ated by our method that uses both the contact spaces and occupancy
estimators. Given the collision-inducing input path, our method gen-
erates a motion that keeps enough distance from the obstacles while
retaining the naturalness of the original motion clips. In the second
scenario that removes the effect of the contact spaces, we randomly
select contact points instead of running Algorithm 1, which finds
contact points near the mean of contact spaces. A candidate pair
of T and C are evaluated by Equation (7) with fn term removed.
Random selection of contact points decreases the planning time,
but the resulting motion shows large deviations from the original
motion clips as shown in Figure 16(b). Figure 16(c) shows the case
that only the contact spaces are used but the occupancy estimators
and collision resolution are omitted. The resulting motion inevitably
collides with the obstacles. Figure 16(d) is the case that collision
check is performed for each sample contact points instead of using
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Fig. 11. Climbing up a cliff. (a) Environment and input path. (b) Contact spaces of selected nodes differently colored per end effector. Red circles denote the
mean of contact spaces. (c) Occupancy values. (d) Contact points. (e) Joint paths. (f) Whole-body motion after inverse kinematics.

Fig. 12. Tree climbing example. (a) Contact points found for the input path (green). (c) Joint paths. (d) Final whole-body motion.

the occupancy estimator. For randomly selected contact points, we
generate joint paths to reach the contact points using the Laplacian
motion deformation and then check collision between the joint paths
and the environment. The resulting motion shows smaller deviation
from the input path while avoiding collisions with the obstacles.
However, this is achieved at much higher computational cost than
our method. Table III reports compute times for each method. The
second column shows the average time taken for contact planning
per node, of which the time consumed for collision checking is
shown in the third column.

Effect of the Voxel Size

The voxel size largely depends on the geometric details of the
environment. In our experiment, the voxel size in each experiment
was determined by the fine details of each environment, for example,
pillars in Figure 16, branches in Figure 12, and the gap between the
rings in Figure 15.

To investigate the effect of the voxel size on the compute time
and accuracy of occupancy estimators, we varied the voxel size for
the tunnel environment (Figure 13) and measured them for a single
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Fig. 13. Passing through a hole. (a) Side and top views of target environment. (b) Joint paths before collision resolution. (c) Joint paths after collision
resolution. (d) Final motion.

Fig. 14. Our method could find joint paths for a tapered cave of which the final height is only about 30% of the height needed by the original motion clip.

Table III. Compute Times of Compared Methods
in Figure 16

Number of Time for contact Time for collision
contact nodes planning/node check/node

(a) 13 3.7s (CS) 0.3s (OE)
(b) 16 0.5s (RS) 0.3s (OE)
(c) 9 3.3s (CS) —
(d) 15 104.3s (CS) 100.9s (CC)

CS: contact spaces, RS: random sampling, OE: occupancy estimators, CC:
per-sample collision check.

node (motion segment) in the middle of the tunnel. The error rate
of the occupancy estimator is measured by the average occupancy
value of those occupancy grid cells that are incorrectly identified
as penetrating the environment. Figure 17 shows the test result.
Increasing the voxel size decreases the contact planning time, since
fewer surface voxels are tested. For a flat surface, halving the voxel
size increases the number of surface voxels by a factor of four.
The error rate of occupancy estimator increases with the voxel size
because a larger surface voxel includes more empty space, making
more occupancy grid cells in the air be diagnosed as colliding with
the environment.

8. DISCUSSION AND FUTURE WORK

We introduced a method for generating the multi-contact motion
of a character in a complex environment. The key elements of the
method are the contact space and occupancy estimator that allow for
the estimation of the quality of a contact node and its contact points
at a particular location in the environment before performing local
planning. Our approach can be understood as an effort to enable the
contact planner to know whether a candidate contact point is feasible
or not without actually trying to reach the points. The effectiveness
of this approach has been demonstrated by the experiments. Here
we discuss the limitations of our proposed method and the possible
directions for improvement.

For the experiments, we constructed a small contact graph that
included mostly climbing motions because there are not many multi-
contact motions available. The proposed method is, of course, not
restricted to climbing motions, and we plan to expand the contact
graph and generate other kinds of multi-contact locomotions.

We implemented the two-step motion generation in which the
contact sequence to reach the goal is first planned and the whole-
body motion is generated next. However, the contact sequence can
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Fig. 15. An example of narrow passage. (a) Environment and input path. (b) Contact spaces of selected nodes differently colored per end effector. Red circles
denote the mean of contact spaces. (c) Occupancy values. (d) Contact points. (e) Generated joint paths. (f) Whole-body motion after inverse kinematics.

turn out to be infeasible during the motion generation step, in which
case we need to return to the contact planning step and find the next
best contact sequence. We have not implemented this as it is not our
major concern, but it can be done without difficulties by modifying
the presented algorithms. In addition, dynamic feasibility and qual-
ity of the final motion will be improved if a dynamic optimization
is included for the final motion generation stage.

Although we examined the physical feasibility of contact points
when training contact spaces and occupancy estimators, the result-
ing motion obtained from the online motion generation is not guar-
anteed to be physically feasible. Recall that our method for balance
check is static and does not take friction into account. Therefore, our

method would have a high rate of failure for vigorously dynamic
movements or for the environment with low friction such as on
ice. For the applications where accuracy is important (e.g., motion
planning of physical robots), the contact space needs to be im-
proved to be able to consider dynamic balance and variable friction
states.

We did not consider grasping as a means of locomotion. Grasping
will enable a virtual character to move in a challenging environment
with small footholds. To include grasping for the planning, the con-
tact space needs to be extended to distinguish contact points for
pushing and those for grasping. Balance check should also be ad-
equately changed to take grasping into account. In addition, we
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Fig. 16. Four compared cases. (a) Both contact spaces and occupancy estimators are used (our method). (b) Contact points are selected randomly and
occupancy estimators are used. (c) Only contact spaces are used. (d) Contact spaces are used and collision check is performed for each sample instead of using
occupancy estimators.

Fig. 17. Time for contact planning and error rate for occupancy estimator
according to the voxel size.

assumed that only the end effectors make contact with the environ-
ment. Allowing for more body parts to contact with the environ-
ment will generate a larger repertoire of motions such as rolling and
crawling with the elbows and knees.

Since the occupancy estimator outputs the occupancy values of
a discretized space, its accuracy will degrade if an environment
contains structures that are much thinner than the grid size of the
occupancy estimator (e.g., jungle gyms). A solution to this problem
would be to develop a continuous version of an occupancy estimator,
which predicts the occupancy density at any 3D position against
input contact points.

APPENDIX

A. EXTRACTING CONTACT MOTION CLIPS
FROM MOTION DATA

In order to segment motion data into contact motion clips, as shown
in Section 5.1, we need to determine the state of each end effector
to be either contact or free. Estimating the contact state is not easy
without any environment information. Thus, we make the task a
little easier by assuming that the motion data of interest contains
continuously moving motion and an end effector with the smallest
speed is always in contact with the environment. State assessment
can now be done by the speed of the end effectors, but this process
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is still generally not straightforward due to the high level of noise in
the data. After several trials, we adopted the following procedure,
which worked reasonably well in our experiment, but still requires
some manual fixing.

First, we compute the speeds of the end effectors and denoise
them with a low-pass filter. Then, at each frame, we divide the four
end effectors into three groups with respect to the speed. The average
speed of the slowest group sets the base speed of the contacting end
effectors. Then, we compare with the average speed of the other
groups. If it is less than twice of the base speed, then the end
effectors in the group are also determined to be in a contact state.
Otherwise, they are in a free state.

REFERENCES

Karim Bouyarmane and Abderrahmane Kheddar. 2011. Using a multi-
objective controller to synthesize simulated humanoid robot motion
with changing contact configurations. In IEEE/RSJ Int’l Conf. Intelligent
Robots and Systems (IROS). 4414–4419.

Myung Geol Choi, Manmyung Kim, Kyung Lyul Hyun, and Jehee Lee.
2011. Deformable motion: Squeezing into cluttered environments. Com-
put. Graph. Forum 30, 2 (Nov. 2011), 445–453.

Min Gyu Choi, Jehee Lee, and Sung Yong Shin. 2003. Planning biped
locomotion using motion capture data and probabilistic roadmaps. ACM
Trans. Graph. 22, 2 (Apr. 2003), 182–203.

Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor,
Wolfram Burgard, Lydia E. Kavraki, and Sebastian Thrun. 2005. Prin-
ciples of Robot Motion: Theory, Algorithms, and Implementations. MIT
Press.

Adrien Escande, Abderrahmane Kheddar, and Sylvain Miossec. 2013. Plan-
ning contact points for humanoid robots. Robot. Auton. Syst. 61, 5 (2013),
428–442.

Kris Hauser, Timothy Bretl, Jean-Claude Latombe, Kensuke Harada, and
Brian Wilcox. 2008. Motion planning for legged robots on varied terrain.
Int. J. Robot. Res. 27, 11–12 (2008), 1325–1349.

Edmond S. L. Ho, Taku Komura, and Chiew-Lan Tai. 2010. Spatial rela-
tionship preserving character motion adaptation. ACM Trans. Graph. 29,
4 (July 2010), 33:1–33:8.

Sumit Jain, Yuting Ye, and C Karen Liu. 2009. Optimization-based inter-
active motion synthesis. ACM Transactions on Graphics (TOG) 28, 1
(2009), 10.

Changgu Kang and Sung-Hee Lee. 2014. Environment-adaptive contact
poses for virtual characters. Comput. Graph. Forum 33, 7 (2014), 1–10.

Mubbasir Kapadia, Xu Xianghao, Maurizio Nitti, Marcelo Kallmann,
Stelian Coros, Robert W. Sumner, and Markus Gross. 2016. Precision:
Precomputing environment semantics for contact-rich character anima-
tion. In Proceedings of the 20th ACM SIGGRAPH Symposium on Inter-
active 3D Graphics and Games. ACM, 29–37.

Manmyung Kim, Kyunglyul Hyun, Jongmin Kim, and Jehee Lee. 2009.
Synchronized multi-character motion editing. ACM Trans. Graph. 28, 3
(Jul. 2009), Article 79, 9 pages.

Yoshihito Koga, Koichi Kondo, James Kuffner, and Jean-Claude Latombe.
1994. Planning motions with intentions. In SIGGRAPH’94. 395–408.

Lucas Kovar and Michael Gleicher. 2004. Automated extraction and param-
eterization of motions in large data sets. ACM Trans. Graph. 23, 3 (Aug.
2004), 559–568.

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2002. Motion graphs.
In ACM Transactions on Graphics (TOG), Vol. 21. ACM, 473–482.

J.-C. Latombe. 1991. Robot Motion Planning. Kluwer Academic Publishers.

Manfred Lau and James J. Kuffner. 2005. Behavior planning for character
animation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA’05). ACM, New York, NY,
271–280.

Jehee Lee, Jinxiang Chai, Paul Reitsma, Jessica Hodgins, and Nancy Pollard.
2002. Interactive control of avatars animated with human motion data.
ACM Trans. Graph. 21, 3 (July 2002), 491–500.

Kang Hoon Lee, Myung Geol Choi, and Jehee Lee. 2006. Motion patches:
Building blocks for virtual environments annotated with motion data.
ACM Trans. Graph. 25, 3 (July 2006), 898–906.

Sbastien Lengagne, Joris Vaillant, Eiichi Yoshida, and Abderrahmane Khed-
dar. 2014. Motion planning with sequential convex optimization and con-
vex collision checking. Int. J. Robot. Res. 33 (2014), 1251–1270.

Sergey Levine, Yongjoon Lee, Vladlen Koltun, and Zoran Popović. 2011.
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