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Abstract

Human-object interaction is important information for scene creation and understanding. Most previous studies ob-

tain the interaction-contextual information from the observed data on human-object interaction, but the data collec-

tion requires significant amount of time and effort, as well as state-of-the art capturing technique. In addition, the

observation-based approach cannot be applied to virtual objects well. As a viable alternative, we propose a novel

method to reconstruct synthetic scenes purely from captured motions and to analyze the interaction-contextual infor-

mation of the synthetic scenes and motions. The scene reconstruction process searches for 3D objects from an object

database that match the captured motions, which is achieved by constructing abstract objects containing contact-

related information inferred from captured motions. Scene analysis process obtains interaction-contextual informa-

tion, including interaction behavior, functionality of an object, and the interaction space of an object. We demonstrate

the effectiveness of our method through a number of experiments.
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1. Introduction1

Creating a scene or analyzing information on interac-2

tion with a scene are of interest to researchers in many3

fields including computer graphics, computer vision,4

and HCI [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Human inter-5

action behavior occurs frequently in daily life, and thus6

is an important factor for creating and understanding a7

particular situation or scene. For example, when we ob-8

serve, in a single scene, human-object interactions such9

as 1) some people sitting on a chair, 2) some holding10

books, 3) some looking at a board in front of them, and11

4) a person writing on the board, we can infer that the12

scene is a classroom.13

Human-object interaction includes an actor, interac-14

tion behaviors, and a target object along with its func-15

tionality and interaction space. A number of studies16

have been conducted to infer such context, using various17

sensor data such as image, point cloud, and 3D geome-18

try data of objects. Savva et al. found an area for inter-19

action behavior in an environment through action maps20
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created by using motion capture data and geometry in-21

formation of the captured space [4]. By using geomet-22

ric information and its structural features, Hu et al. ana-23

lyzed the functionality of the object [5]. Kim et al. cre-24

ated an appropriate interaction pose by using a stochas-25

tic model learned from 3D models [6]. Grabner et al.26

searched suitable positions for a static sitting pose in a27

3D-scanned space, after learning the geometry informa-28

tion of sittable 3D models [7]. Kang and Lee proposed a29

method to create contact poses for a given environment30

by using contact-related features extracted from sample31

poses [12].32

In most studies, the interaction-contextual informa-33

tion is learned by using the observation data on the34

interaction between the actor and object, but this ap-35

proach has some limitations. The acquisition of the36

observation data requires significant time, effort and37

state-of-the art capturing techniques, and thus the data38

is not widely available. The insufficiency of data may39

cause the learned model to be overfitted to the train-40

ing data. From a computer graphics perspective, we41

need to be able to analyze the virtual objects of which42

shape may not be easily found in the real world. In this43

case, the observation-based approach cannot be applied44

in a straightforward manner. In addition, the existing45
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machine learning-based approaches can only generate46

static contextual information on the human-object inter-47

action (e.g., contact pose rather than contact motion).48

In order to overcome these limitations, we propose a49

novel method to reconstruct synthetic scenes from cap-50

tured motions, and to analyze the interaction-contextual51

information of the synthetic scenes and motions. For the52

scene reconstruction we search for 3D objects from a53

3D object database that match the capture motions and54

place them in appropriate orientations and positions.55

Our method is characterized by constructing abstract56

objects, which contain contact-related information in-57

ferred from capture motions. Through scene analysis,58

we obtain contextual information on the interaction, in-59

cluding interaction behavior, functionality of an object,60

and the interaction space of an object.61

Interaction behavior: Motion data, if it contains ob-62

ject interaction, generally consists of a sequence of ac-63

tions: moving to a target - transition - interaction with64

an object - transition - moving out (or to another tar-65

get). Transition is a preparatory or a finishing action be-66

fore or after the actual interaction occurs, and thus is an67

important part of human-object interaction. We devel-68

oped a method to segment a motion sequence into this69

series of actions. The proposed method defines the suit-70

able feature vector reflecting the human-object interac-71

tion motion and obtains a Gaussian Process Regressor72

that classifies the actions.73

Functionality: We define an object’s functionality as74

the interaction motions related with the object, such as75

“sitting down” and “lying”. In this paper, the functional-76

ity of an object is represented as the pair of the object’s77

surface and the contacting body part, e.g., seat-hip. The78

information on an object’s functionality can be used to79

create a new interaction motion for the object. The func-80

tionality of an object is derived straightforwardly from81

the process of reconstructing synthetic scenes.82

Interaction space: In order for a human to interact83

with an object, some volume of an empty space sur-84

rounding the object is necessary so that a user can tran-85

sition to the object and make poses with respect to the86

object. The information on the interaction space is use-87

ful for designing the object layout in a scene as well as88

for creating or modifying motions that interact with the89

object. We developed a method to compute the interac-90

tion space of an object by finding the spaces where the91

transition and interaction actions can be applied to an92

object through random sampling.93

The analyzed information by our method can be used94

for many purposes. Interaction space and functionality95

of objects are useful for automatic arrangement of 3D96

objects according to a given human-object interaction97

scenario. In addition, the interaction space of an object98

can be used to generate interaction motions customized99

to that object.100

The remaining part of the paper proceeds as follows.101

We discuss related work in Secion 2. Section 3 provides102

an overview of the proposed framework, and Sections103

4 and 5 detail the procedure for reconstructing abstract104

scenes and virtual scenes. Section 6 reports our experi-105

ment. Section 7 discusses the advantages and limitations106

of our work and concludes the paper.107

2. Related Work108

Our goal is to reconstruct synthetic scenes from cap-109

tured motions and analyze interaction context with the110

scene and the motion. This section reviews previous111

studies closely related to our method.112

Scene Reconstruction. With the advent of low-cost113

depth cameras, many researchers have conducted stud-114

ies on reconstructing scenes from RGB-D data [1].115

Given low quality data generated by a 3D scanner, the116

method of [1] reconstructs synthetic scenes by using117

prior knowledge learned from a scene database. Firstly,118

as an intermediate representation, 3D scan data is rep-119

resented by the scene template in which geometric and120

activity properties are also embedded. The activity is ex-121

pressed as a continuous distribution on a 2D floor. Then,122

a scoring function selects suitable 3D objects that match123

the scene template. [3] reconstructs plausible 3D scenes124

from low-quality RGB-D data based on the contextual125

relationship between 3D objects learned from the scene126

database. [13] segments 3D space represented as RGB-127

D data into semantic regions such as sofa, floor, bed,128

and background, and then creates synthetic scenes by129

retrieving 3D models that fit the semantic regions. [14]130

reconstructs a scene by extracting dominant planes from131

the scanned environment and matching objects to the132

planes. In the preprocessing step, the objects are seg-133

mented into planes for efficient matching tests.134

[3, 13, 14, 8] define relationships among objects or135

parts by using geometry information in order to recon-136

struct scenes, whereas [1] defines interaction informa-137

tion between an object and an actor. They all require a138

pre-processing or training step and an object database.139

In other lines of research, [2] proposed a method to re-140

arrange objects by using relationship between objects,141

and [15] developed a method to combine multiple vir-142

tual scenes to create a complex scene.143
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Interaction behavior. [16, 17] investigated methods to144

create an appropriate human pose against an input ob-145

ject or environment. The fitness of a pose with respect146

to an environment is measured by a probabilistic model,147

which has been learned from observed human activity148

or downloaded 3D models. [6] also developed a method149

to create interaction poses for an arbitrarily given ob-150

ject. This is realized by a stochastic model trained with151

a set of sample objects to which appropriate contact152

points are annotated by hand. The method of [12] finds153

a set of candidate contact points from input objects and154

then searches for human poses that are physically bal-155

anced while realizing the contact points. [18] proposed156

a 4D human-object interaction model which defines re-157

lationships between an object and an actor for a specific158

event or object recognition. The 4D human-object in-159

teraction model is a 3D spatial domain which includes160

a type of human pose and objects, and an 1D tempo-161

ral domain which includes a continuous chronological162

order of the events (e.g., approach the dispenser, fetch163

water, and leave the dispenser). [2] also models object-164

object and human-object relations. The objects are rear-165

ranged to preserve the relations between the objects for166

a particular scene and generate an appropriate interac-167

tion pose with respect to the object. In order to model168

human-object relations, [2] developed the Infinite La-169

tent Conditional Random Field.170

Functionality of objects. [1] finds the functionality and171

the interaction space in a given scene by using an ac-172

tivity model, which is created by using manually tagged173

interaction-related data to each object. [19] finds cor-174

responding parts with similar function between the ob-175

jects by computing shape similarity between objects176

through Graph Kernels [20]. [5] analyses the functional-177

ity of the object using geometric information and struc-178

tural features of an object. They extract the Interaction179

Bisector Surface [21] and Interaction Region of the ob-180

jects in a given scene, and structurize objects as a type181

of a tree according to functionality of the objects.182

Interaction space of objects. [22] estimates 3D geom-183

etry from 2D images and searches feasible positions184

in a scene for the postures in a pose database. [7]185

searches proper positions for a sitting posture in a 3D186

scanned space by using geometric information previ-187

ously trained from sample chair models. [4] studies the188

functionality of a physical scene from the observed be-189

havior of people in the scene. The trained model, called190

the action map, estimates the probability of interac-191

tion on the surfaces of the 3D scene and finds a fea-192

sible space for the interaction behavior. [23] proposed193

Previous work Our work

Input data RGB-D data Motion data

Interaction behavior Static pose Motion data

Interaction space Position for an 3D space for an
interaction pose interaction motion

Table 1: Comparison between previous work [1, 3, 13] and ours.

a method to place additional objects that are appropri-194

ate to the human actions available in an initially given195

sparse set of objects. By learning the relations among196

human poses, related object categories, and spatial con-197

figuration of the objects from annotated photos, their198

method allows for constructing scenes that are behav-199

iorally consistent. By contrast, our work is focused on200

creating contact consistent scenes without resorting to201

learned data. An additional difference is that we con-202

sider the transition behavior of human movement with203

respect to objects whereas [23] considers only static204

poses. [24] proposed a descriptor for interaction be-205

tween human and object, and among multiple objects.206

The descriptor has strong advantages in that it covers207

a wide variety of scenarios including fluid-solid inter-208

action and dynamic interaction. In contrast, we focus209

on human-object interaction. Unlike [24] that does not210

differentiate the interaction context, our method sub-211

divides interaction behaviors into approach, interaction,212

and release. Additionally, our method identifies the vol-213

ume of the space used for the interaction between a hu-214

man and an object.215

Table 1 shows the key differences between previous216

work and ours. Previous work [1, 3, 13] use RGB-D data217

of a partial scene as input data, while our method uses218

captured motion in a scene as input. Our approach can219

only reconstruct objects that a human interacts with, but220

[1, 3, 13] have an advantage in that by using RGB-D221

data the whole scene is covered. However, processing222

RGB-D data is rather complicated, especially if data223

quality is low [13], and may require additional infor-224

mation such as manually drawn strokes. In contrast, the225

process of our work is simple and does not require ad-226

ditional information. Regarding the interaction behav-227

iors, previous work considered only static poses while228

our method deals with a motion sequence. With respect229

to the interaction space, previous work only generated230

static poses for an object, but our method considers the231

3D volume space for the interaction space. [18] also232

considers the transition behavior in a similar manner to233

us, but they only consider temporal separations for tran-234

sition behavior from a given motion without spatially235

considering whether this transition action can be per-236

formed or not.237
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Figure 1: Overall flow of our method.

3. Overview238

The proposed method reconstructs synthetic scenes239

suitable for the captured motions and obtains interac-240

tion context by analyzing the reconstructed synthetic241

scenes. Figure 1 shows the overall process of the pro-242

posed method.243

Input to our method is a 3D object database and cap-244

tured human motions. We assume that virtual 3D objects245

and human models are scaled to the actual object and246

human sizes. Our method aims to reconstruct a scene247

with only those objects with which a human makes248

enough amount of contact. To this end, we first estimate249

contact blocks from captured motions, small volumet-250

ric units of objects which a human makes contact with,251

and then construct in the order of planes, abstract ob-252

jects, and abstract scenes. Actual scenes are composed253

by searching from a 3D object database for 3D objects254

that match the abstract objects and placing them in ap-255

propriate orientations and positions. The object retrieval256

is performed in two stages, the initial broad-phase filter-257

ing based on the heights and normal directions of the258

constructed planes, followed by the detailed matching259

between the abstract objects and 3D objects.260

The interaction context is then obtained by the261

matched objects, their corresponding abstract ob-262

jects, and human motions. In particular, we segment263

interaction-related subsequences from the captured mo-264

tion sequence, and estimate the interaction space around265

(a)

(b)

(c)

Figure 2: (a) The environment where motions are captured includes

two sofas, a camp bed, and a high table. (b) Snapshots of input mo-

tions: sitting, sitting while leaning, lying, reading a newspaper. (c)

Captured motions: sitting (subject A), sitting with leaning (subject B),

lying (subject C), and putting hands on a table (subject D).

the object. We also register the contacting body parts to266

the object planes.267

4. Scene Reconstruction268

4.1. Data Acquisition269

Motions were captured with a Perception Neuron270

(https://neuronmocap.com/) device, a motion capture271

device using inertial sensors. We captured four types272

of motions, i.e., sitting (subject A), sitting with leaning273

(subject B), lying (subject C), and putting hands on a274

table (subject D). Sitting and sitting with learning mo-275

tions are captured twice, each captured in a different lo-276

cation inside a sofa. A total of 6 motion sequences were277

used for the experiment. Figure 2 shows the environ-278

ment, screenshots of the capturing session, and the ob-279
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(a) (b)

Figure 3: (a) The character model used in our experiment has 21 body

parts. We assume that a human contacts the environment with only a

subset of body parts: the hands, back, legs, and feet. (b) Markers and

their normal directions.

Figure 4: Objects are segmented into planes to test matching with ab-

stract objects.

tained motion data. We did not capture the geometry of280

real objects.281

4.2. Actor Representation282

Figure 3 shows the character skeleton used in our283

experiment. The skeleton model provided by the soft-284

ware associated with the motion capture device was too285

detailed to stably extract contact information, and thus286

we retargeted the motion to a simplified skeleton model287

(Fig. 3) using Maya. The hands are modeled as spheres,288

and all others as capsules. We assume that a human289

makes contact with the environment only on a partic-290

ular side of some body parts. To model this, we attach291

markers for contact points on the hands, back, legs, and292

feet as shown in Figure 3 (b). We measure the veloc-293

ity profiles of the candidate contact points from the mo-294

tion data by using the finite difference method and the295

Kalman filter [25].296

(a) (b) (c)

Figure 5: This figure conceptually illustrates the process to obtain

groups of contact blocks. (a) The boundary of the motion space is a

candidate space that can be the surface area of an object. The whole

space is discretized into blocks, and those blocks containing the mo-

tion boundary are marked as surface blocks. (b) Among the surface

blocks, we identify contact blocks that are likely to be contacted by

human. (c) Contact blocks that share the same contacting body part

form a group.

4.3. Object Representation297

Given a 3D mesh of an object to be included in the298

object database, we analyze its shapes and precompute299

some attributes that are used for matching the object300

with an input motion. Since the matching process is per-301

formed with respect to the surface planes of the 3D ob-302

ject, we first segment the surface planes from the object.303

For this, we voxelize the object by using a uniform grid304

and estimate the normal direction of the surface cells.305

Then the adjacent cells with similar normals are clus-306

tered as a plane. Figure 4 shows the segmentation results307

for some indoor objects.308

Subsequently, in order to support an initial test that309

quickly filters out un-matchable objects, we precompute310

a filter map per object that indicates the normal direc-311

tions and heights that the planes of an object can have.312

Specifically, a filter map is represented by a Boolean313

table in which the X-axis denotes the polar angles of314

the plane normals divided into intervals, and the Y-axis315

is the intervals of the plane heights. An entry (x,y) is316

marked true if the object has a plane with a normal and317

height in the ranges indicated by x and y. In our exper-318

iment, the polar angles are divided by 20 degrees into319

9 number of cells, and the plane heights are divided by320

0.05 meters into 35 number of cells.321

4.4. Abstract Scene322

To reconstruct scenes from motion data, it is neces-323

sary to estimate the existence of objects from the motion324

data. Certainly there could be many objects in an envi-325

ronment in which motion is captured, and some make326

contact with a human while others do not. We only at-327

tempt to reconstruct those objects that a human interacts328

with and hence can be estimated purely from motion,329

and ignore other objects. In order to simplify the pro-330

cessing of the spatial data, we discretize the 3D space331

that a motion belongs to with a uniform grid. Each cell332
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(a)

(b) (c) (d)

Figure 6: (a) An example of a condition under which a surface block

is identified as a contact block. (b-d) The surface blocks collided with

the character’s markers. Normals of surface blocks are estimated from

the normals of contacting markers.

in a grid, dubbed a block in this paper, serves as a unit333

for the spatial processing. The abstract scene is con-334

structed from the blocks that a human interacts with335

through contact. A set of such blocks forms a plane, and336

then nearby planes form an abstract object. An abstract337

scene is composed of the abstract objects.338

Contact Block Extraction. We analyze the motion and339

extract the points at which a human contacts objects. Let340

us call the blocks, including the points, contact blocks.341

Our first goal is to identify the contact blocks. Human342

cannot penetrate into solid objects, and the contact be-343

tween a human and an object occurs at the boundary of344

the two entities. Let us find the motion space, a Carte-345

sian subspace that a human performing a motion occu-346

pies, and then the motion blocks are those blocks in the347

motion space. The motion blocks are collected by ex-348

amining the collision of a block with oriented bounding349

boxes of a character performing the input motion. We350

can also define the surface blocks, which are the blocks351

on the boundary of the motion blocks (Fig. 5). Note that352

the surface blocks are on the surface of a motion space,353

not on the surface of the environment objects. Then, the354

contact points must be included in the surface blocks,355

and we have only to examine each surface block to iden-356

tify the contact blocks.357

There can be numerous ways that a human can in-358

teract with an object through touch. She can touch an359

object at a static point, but also can rub or stroke on the360

object’s surface. Thus, it is not straightforward to de-361

termine whether or not a human touches an object only362

(a) (b)

(c) (d)

Figure 7: (a-d) show the abstract objects created from subjects A and

A, subjects A and B, subject C, and subject D, respectively. The con-

tact blocks are colored per body parts associated with the blocks. Red-

hip, green-leg, blue-back, white-hand. Planes in cyan: planes made of

contact blocks of the same functionality. Note that the contact blocks

in (c) are slanted due to the inclination of a captured human pose.

by looking at her motions. After examining various mo-363

tion data involving object interaction, we have chosen a364

heuristic that a contact block is a surface block satisfy-365

ing all three conditions below:366

• It collides with a marker on a human.367

• At a certain time instance, the direction of the368

marker’s velocity is parallel to the outward normal369

direction of the surface block, i.e., the maker ap-370

proaches the imaginary surface in a perpendicular371

direction.372

• At a certain time instance, the speed of the maker373

is nearly zero.374

Figure 6 shows a case that a surface block is selected375

to be a contact block. When the character is sitting, a376

marker on the upper leg approaches a surface block.377

At this time, the directions of the surface marker’s nor-378

mal and the marker’s velocity become close to parallel,379

and the velocity approaches zero (Fig. 6 (a)). In such a380

case, the surface block is categorized as a contact block.381

The normal of a contact block is calculated as the aver-382

age of the normals of the collided markers on a surface383

block. Figures 6 (b)-(d) show the surface blocks col-384

lided with the character’s markers. The normal of the385

surface blocks is similar to the direction of the corre-386

sponding part.387

Abstract Objects and Scenes. Next, we extract planes388

from the contact blocks. To this end, the contact blocks389
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that are close to each other, have similar normal direc-390

tions, and collide with the same body part, are put into391

the same group. Groups that have less than three ele-392

ments are considered as outliers and are eliminated. One393

intricacy originates from the fact that two or more peo-394

ple can interact with the same object at the same time.395

For instance, imagine that two persons sit on a sofa. By396

only looking at their motions, we cannot differentiate397

this scenario from one where two persons sit on two398

separate chairs. Our strategy against this redundancy is399

to adopt multiple solutions for the groups: If the con-400

tact blocks in a group are generated by more than one401

motion, we generate additional groups by dividing the402

group per source motion.403

Subsequently, we generate planes per group. The po-404

sition and normal direction of the plane is first estimated405

by using the principal component analysis of the con-406

tact blocks, and four corner points are generated as the407

min/max boundary. PCA is performed against the 3D408

positions of the contact blocks, and then the third com-409

ponent is selected as the normal direction. At this stage,410

the outward direction of the normal is not yet identified,411

which is achieved by selecting a direction closer to the412

average normal of the surface blocks. It is to be noted413

that an enough number of the contact blocks need to be414

included in PCA. Otherwise, noise in a few blocks may415

induce instability in the plane estimation, as will be dis-416

cussed in Sec. 6.417

We assume that each motion interacts with only one418

object. Therefore, the planes created from the same mo-419

tion among planes are grouped as one object. In the case420

that two persons share an object, planes created from the421

two motions constitute one object. An abstract object422

contains the following attributes in order to find match-423

ing objects and help estimate the interaction-related in-424

formation of the object.425

• Object volume, calculated as the volume of its426

bounding box.427

• The positions and normal directions of planes.428

• The body parts colliding with a plane.429

A bounding box is determined by the min/max po-430

sitions of all the contact blocks that make up the ob-431

ject while the minimum height is always assumed to be432

zero. The body parts colliding with a plane is stored as433

the functionality of surface of matched 3D objects. Fi-434

nally, the abstract objects constitute an abstract scene.435

Figure 7 shows abstract objects created by input mo-436

tions.437

4.5. Synthetic Scene Reconstruction438

The synthetic scenes are reconstructed by finding 3D439

objects from a database that match the abstract objects.440

In this process, we search for the object mi that matches441

the abstract object from the 3D object database M =442

{m1, . . . ,mN}.443

The matching process is performed with respect to444

the surface planes of the 3D objects, and it is performed445

in two stages.446

First, for each mi ∈ M, we perform a pre-validation447

check by using its filter map. We collect a list of (po-448

lar angle, height) pairs of all planes of the abstract ob-449

ject, and check whether all the filter map’s cells that450

correspond to the pairs are true. If false, which means451

that there is certainly at least one abstract object plane452

that cannot be matched to mi, mi is discarded from the453

further checking. If true, we proceed to the fine scale454

matching test.455

The basic tool for the fine scale matching process is456

the cost function that measures the fitness of an object457

mi with a given pose T ∈ SE(3) to an abstract object:458

E(T,mi) = w1 fc +w2 fv +w3 fp (1)

fc = ∑
j

δc(x j) (2)

fv =
1

∑ j δv(x j)+ ε
(3)

fp = di fdis(pa, po)+di fdeg(pa, po) (4)

The collision cost fc discourages collision between the459

object and the motion space. The variable δc(x j) is 1 if460

the position x j of an object cell collides with a motion461

block, and 0 otherwise. The term fv drives the object’s462

volume to overlap the volume of the abstract object.463

The variable δv(x j) is 1 if x j is included in the volume464

of the abstract object, and 0 otherwise. A small posi-465

tive number ε prevents fv from overflowing. For fp, we466

first select po at the closest distance to pa. The distance467

di fdis(pa, po) is calculated as the average of the closest468

distance from each block of pa to po. As for the angular469

difference di fdeg(pa, po), we measure the average of the470

dot products between the normals of pa and po. Weight471

wi controls the importance of each cost.472

To obtain E(T,mi), we place the 3D object at the473

center of an abstract object, and compute the optimal474

transformation matrix T of an object mi in terms of475

the cost E(T,mi) using the CMA-ES, a derivative-free476

optimization algorithm for multi-objective optimization477

[26]. The sampling range for the transformation ma-478

trix is set as follows: scale [0.9, 1.1] , translation [-15,479

15] cm, and vertical rotation [0, 2π]. Then we collect480

a set of matched objects with those objects that have a481
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(a) (b)

(c) (d)

Figure 8: The top shows conformity value according to the number of frames for four types of motion data. The bottom shows the postures of

segmented frame data. A pose is determined to belong to a transition if 1×10−4 < y < 0.9.

cost lower than a certain threshold. The reconstructed482

synthetic scenes are created by the combination of the483

matched objects per abstract object.484

Note that our goal is to find 3D objects that allow485

for the input motion, not to retrieve objects of which486

representative function best matches the given motions.487

Therefore, a bed can be retrieved if its height matches488

that of an abstract object that has been constructed from489

sitting motions. We assumed in our experiment that the490

size of 3D objects in the database does not vary signifi-491

cantly. This is because scaling of an object may lead to492

undesirable object matching such as a human lie on a493

giant stool. However, appropriate scaling of the objects494

will increase the number of matched objects for an ab-495

stract object.496

5. Scene Analysis497

By analyzing the reconstructed synthetic scenes, our498

goal is to extract the interaction-related motion from499

the whole motion sequence and to obtain the interaction500

space of the objects. Additionally, we register the infor-501

mation of the contacting body part to the object planes.502

Since the abstract object has the attributes of the con-503

tacting plane and body part, we have only to transfer the504

information to the object’s planes that correspond to the505

planes of the abstract object. We detail how other goals506

are achieved next.507

5.1. Interaction behavior508

In general, a motion sequence related with object509

interaction consists of several sub-sequences: (moving510
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to a target point)-(transition)-(interaction)-(transition)-511

(moving out), and our goal is the segment them from512

the whole motion sequence.513

Our approach to this problem is to use a regression514

model: we train a function y = f (x) that estimates the515

conformity value y of a feature vector x from an in-516

put pose with respect to a target object and extract the517

poses that have conformity higher than a certain thresh-518

old. In the process of creating abstract objects in Sec.519

4.4, we detect the poses in contact with objects. Let us520

call them canonical poses. We train a regression func-521

tion such that the conformity of the poses similar to the522

canonical poses is 1, and that of the dissimilar pose is523

0. This approach enjoys the benefit of a simple struc-524

ture for the regressor as it only deals with the similarity525

between poses and does not need to consider the tem-526

poral connectivity of the poses. We designed the feature527

vector to take the following aspects into account:528

• Interacting behavior should be close enough to an529

object.530

• Interacting behavior should have similar move-531

ment characteristics with respect to the contacting532

body parts.533

We employ the Gaussian Process (GP) regression model534

[27] for the regressor (Eq. 5). After training the motion535

data (x) of the interaction interval as y = 1, y ∈ [0,1] is536

determined according to the degree of similarity to the537

frame data(x) in the motion. Training data is simple: it538

includes the pairs (x,y= 1) for the canonical poses. The539

feature vector x is defined as a multi-dimensional vector540

in which the first three elements are the relative position541

(∈ R3) of the center of mass of a human with respect to542

the reference frame of an object, and the remaining ele-543

ments are the velocities (∈ R3) of the markers in contact544

with the objects in the canonical poses. For instance,545

if n markers get in contact with an object in a motion546

sequence, the dimension of x is 3+3n. The kernel func-547

tion for the covariance matrix is modeled as the radial548

basis function (Eq. 6), of which parameter σ is obtained549

by maximizing the log likelihood log p(g|x,σ) (Eq. 7)550

with the Nelder-Mead simplex method [28]. Therefore,551

the GP is only trained to output 1 for x of the canonical552

poses, and the conformity values of other sub-sequences553

are determined from the covariance matrix.554

y = GPR(x) (5)

k(x,x′) = exp

[−||x−x′||2
2σ2

]
(6)

(a) Object and interaction behavior projected on a horizontal plane.

(b) Closest boundary cells to sam-

ple points on the boundary of pro-

jected motion space.

(c) Projected motion spaces for

sample transformations.

(d) Feasible transformations

(blue).

(e) Interaction space, colored as

the conformity value of a cell,

from 0 (blue) to 1 (red).

Figure 9: Procedure to estimate an object’s interaction space from its

interaction motion.

log p(g|x,σ) =−1

2
gT K−1g− 1

2
log |K|− n

2
log2π

(7)

Figure 8 shows the result of extracting interaction555

motion from the motion data. One can see that transition556

and interaction motion are appropriately segmented ac-557

cording to conformity value. The poses corresponding558

to the change of states are shown on the bottom.559

5.2. Interaction space of objects560

We describe a method to estimate the interaction561

space of an object from its related interaction behav-562

ior obtained in the previous Subsection. Our method is563

based on two assumptions:564

(1) The interaction behavior with respect to an object565

occurs in the interaction space.566

(2) The interaction behavior can be rigid-transformed567

to a region in an object that is geometrically sim-568

ilar to the region taken by the original interaction569

behavior.570
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10: (a) to (d) show the process of making surface blocks from

captured motions.(d) white: hand-contacted blocks, red: hip-contacted

blocks, green: leg-contacted blocks, and blue: back-contacted blocks.

See Fig. 11 (a) for the enlarged image. (e) and (f) show the result of

matching 3D objects to abstract objects. AOaa is an abstract object

created from motions for subjects A and A. AOab is an abstract ob-

ject created from motions for subjects A and B. (g) and (h) show the

generated scenes.

Figure 9 shows the procedure to estimate an ob-571

ject’s interaction space from the interaction behavior.572

The main point of the method is to find the proper range573

of rigid transformations that an interaction motion can574

take with respect to an object, and we achieve this by575

associating the motion space for the interaction behav-576

ior with the information in its spatial relationship with577

the object. To this end, we first project the object onto a578

horizontal 2D grid, find the boundary cells, and append579

the object’s height at the location of the boundary cells580

(Fig. 9 (a)). The position and height value of the bound-581

ary cells serve as the feature of the object’s shape. In582

addition, we project the motion space of the interaction583

motion onto the same 2D grid. Then, the spatial rela-584

tion between the interaction behavior and the object is585

defined as the distance from the projected motion space586

to the closest boundary cell and its height value. This587

is realized by collecting a set of sample points on the588

boundary of the projected motion space, followed by589

finding the closest boundary cells and then storing its590

distance and height value. Note that we store the signed591

distance (negative distance to the sample points inside592

the object’s boundary) in order to differentiate whether593

a sample point should be inside the object or not. The594

distance do
i and height value ho

i for each sample point i595

are used to find suitable transformation of the interac-596

tion behavior.597

We collect the feasible transformations of the interac-

tion motion by random sampling. To increase the hit rate

of the sampling, the sampling is bounded to the area ob-

tained by extending the object’s boundary by the maxi-

mum length between the sample points (Fig. 9 (c)). For

each test transformation T , we find the closest boundary

cell from every transformed sample point and compute

its signed distance di(T ) and read its height value hi(T ).
The cost of the transformation is measured by

c(T ) =
1

N

N

∑
i=1

(do
i −di(T ))2 +(ho

i −hi(T ))2 (8)

where N is the number of sample points.598

The interaction space of an object is constructed as599

the union of the motion spaces of the transformed in-600

teraction behaviors that have c(T ) less than a threshold.601

We also assign a conformity value from 0 to 1 to the602

cells in the interaction space as the maximum confor-603

mity value of the pose passing through the cell (Fig. 9604

(e)).605

6. Experiments606

We constructed a 3D object database, which consists607

of a total of 100 objects of chairs, sofas, beds, tables,608

cabinets and desks. Some chairs have backrests and609

some do not. Every object was downloaded from the610

Internet (http://tf3dm.com/ and https://archive3d.net/),611

and roughly scaled to match the size of the human sub-612

ject.613

Figure 10 shows the process of creating synthetic614

scenes from motion. We first compute the bounding box615

from the motion data and perform voxelization (the size616

of voxel: 2.8cm) (Figs. (a, b)). Next, we exclude blocks617

colliding with motions (Fig. (c)) and extract surface618

blocks by the method in Sec. 4.5. If surface blocks form619

a group, they create an abstract plane. A group of ab-620

stract planes create an abstract object (Fig. (e)). Finally,621

a synthetic scene is reconstructed through matching 3D622

objects in the database to abstract objects (Figs. (g)623

and (h)). We empirically set w1 = 0.001, w2 = 0.1, and624
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(a)

(b)

Figure 11: (a) When the contact blocks created by different motions

are not merged, multiple abstract objects are reconstructed instead of

one large object. (b) The separated abstract objects have been matched

to multiple chairs.

w3 = 0.04 for Eq. 1, and an object is determined to625

match the abstract object if the cost is less than a thresh-626

old, which ranges from 0.25 to 0.32 depending on the627

input motion.628

Figure 11 shows the results of the abstract scene when629

the contact blocks created by different motions are not630

merged, and each create separate abstract objects. In this631

case, four chairs are reconstructed, which is in contrast632

with the case where the contact blocks are merged and633

generate a united abstract object, such as the sofas in634

Fig. 10 (e) and (f).635

In order to test the sensitivity of the number of con-636

tact blocks for the estimation of the normal plane, we637

measured the mean and the standard deviation of the er-638

ror, which is calculated as the angle between the normal639

direction estimated by using only a certain number of640

randomly sampled contact points from the normal di-641

rection obtained by using all contact points. Figure 12642

shows the error for the sitting motion (Subject A) that643

has a total of 104 extracted contact blocks. It shows that644

the average error decreases rapidly with the number of645

contact blocks and falls below 10 degrees when six or646

more contact blocks are used.647

Figure 13 shows the results generated from a sitting648

motion (subject A) and a sitting with leaning motion649

(subject B). In the case of sitting with leaning, an ab-650

stract plane is created to support the back, and thus a 3D651

Figure 12: Mean and standard deviation of the normal estimation

error per the number of contact blocks used for the estimation, for

the motion of Subject A.

(a) (b)

(c) (d)

Figure 13: Different types of chairs are reconstructed by the motions

of the Subject A and B.

model with a backrest is necessary (the chair in Fig. (d)652

and the sofa in Fig. (e)). Otherwise, the 3D models se-653

lected may have a backrest or not (the stool in Fig. (d)654

and the chair in Fig. (e)).655

Figure 14 shows the reconstructed synthetic scenes.656

Figures 14 (a-h) are the cases when the contact blocks657

from different motions create abstract objects sepa-658

rately, and Figs. 14 (i-p) are when contact blocks from659

different motions are shared.660

We use three sitting motions and one sitting with661

leaning motion. Two abstract objects are created for sit-662

ting behavior as shown in Fig. 10 (a) and (e). One ab-663

stract object (AOaa) is created by sharing motions of664

subject A and subject A, and another one (AOab) is cre-665

ated by sharing the motions of subject A and subject666

B. The abstract objects are matched to the sofa models,667

but the number of matched objects is different. AOab668

needs back support, so the right sofa of Fig. 14 (i) with-669

out a backrest cannot be matched to AOab. For the same670
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 14: Various synthetic scenes generated with input motion. (a-h) 3D objects generated separately for each abstract object. (i-p) 3D objects

generated with shared abstract object.

Scene Subject (only individual scene)
Sharing Individual A B C D

# abstract 7 9 1 2 3 1
planes

# abstract 4 6 1 1 1 1
objects

# matched 56 67 28 25 35 9
3D objects

# filtered - - 29 30 40 62
3D objects

Table 2: The number of abstract planes, abstract objects, matched 3D

objects generated in our experiment.

reason, the number of objects matched to Subject B is671

smaller than to Subject A.672

Table 2 shows the number of abstract planes, abstract673

objects, and matched 3D objects generated in our ex-674

periment. Figure 15 shows the results of 3D objects675

matching from sitting motion in order of minimum cost676

computed by Equation 1. Table 3 shows time for cre-677

ating an abstract object and matching 3D objects. Time678

for matching 3D objects is proportional to the size of679

Subject A B C D

# Voxels 11K 15K 19K 14K

Creating an abstract 0.67 0.88 1.56 0.77
object (sec.)

Matching 3D 0.44 0.38 0.31 0.39
objects (sec.)

Table 3: The number of voxels used for the processing and the dura-

tions measured for each processing step. Creating an abstract object:

time for creating an abstract object from motions. Matching 3D ob-

jects: average time for matching an abstract object per 3D object.

database because we compare with every object in the680

database. Simple rules that cull out unmatched object681

can save time for matching. Figure 16 shows models682

matched from each motions.683

Figure 17 visualizes of functionality of surfaces with684

respect to the interaction of the 3D model. Different col-685

ors indicate different functionalities. Figures 18 shows686

the results of estimating interaction spaces for 3D ob-687

jects. We can see that the conformity value is high (red688

color) in the space close to the surface where interac-689
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Figure 15: Minimum cost computed from subject A (sitting motion)

for selected 3D objects. The minimum cost computed by Eq. 1 in-

creases in the order of chair, sofa, bed, and table. The object with the

third lowest cost was chosen as a table because it is low enough to sit

on, as shown in Fig. 16 (a).

tions take place. Figure 18 (c) shows a case where the in-690

teraction space completely surrounds the object because691

the stool has an axially symmetric shape, and Fig. 18 (f)692

is a similar case where a human can stand in any direc-693

tion of the table and put her arms on the table. Figure 18694

(e) shows that the interaction space of a sofa occupies695

the space evenly in front and above the sofa.696

Extracting interaction behaviors from human-ground697

interaction. We performed additional experiments on698

extracting interaction behaviors from human-ground in-699

teractions. Figure 19 (left) shows the interaction behav-700

iors segmented from a motion including sitting and ly-701

ing on the ground. As there is no object, canonical poses702

are manually selected from sitting and lying poses. Four703

interaction behaviors are successfully segmented from704

the motion. Figure 19 (right) shows an experimentation705

result on locomotion including stepping on a low object.706

This is a more challenging scenario than previous ex-707

amples because interaction behavior, i.e., the sequence708

from stepping on to stepping down from an object, is709

not distinctive enough from a normal walking in terms710

of the velocities of the contacting markers. As a result,711

a sequence (c to d) is classified as a transition despite712

that human would regard it as a part of an interaction713

sequence.714

7. Limitations and Future Work715

This section discusses several limitations of our ap-716

proach and possible future directions for improvement.717

Our method assumes that the 3D models in the718

database are appropriately scaled so that they match719

the sizes of real objects. This assumption allows us to720

(a)

(b)

Figure 16: Selected models from (a) sitting motion and (b) hands-

putting motion

Figure 17: The functionality of 3D model (red: upper leg (hip) sup-

port; blue: back support; yellow: hand support; green: back, upper leg,

and lower leg support).

vary the 3D model’s scale in the range of 0.9 and 1.1.721

However, since the 3D models found in the Internet of-722

ten have widely varying scales, a manual processing723

to adjust the scales of 3D models was necessary. An724

automatic method to find a proper range of scales of725

given 3D models depending on their properties will re-726

move the manual process and improve the utility of our727

method.728

To increase the matching speed, we use the filter map729

to cull out objects before performing fine scale test.730

However, the time complexity of our matching process731

is still linear to the number of objects in the database,732

which may significantly slow down the matching pro-733

cess for a very large database. In this case, an efficient734

organization of the objects in the database, e.g., the k-d735

tree with respect to the filter map features, will increase736

the filtering speed. In addition, for a very large database,737

finding every matchable objects would not be necessary,738
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(a) (b)

(c) (d)

(e) (f)

Figure 18: The estimated interaction space for various chairs and other types of furniture.

and a sampling-based approach that finds only a user-739

specified number of objects will be enough.740

Since the process of extracting contact blocks detects741

only static contact made by markers approached in ap-742

proximately normal directions, our method cannot deal743

with other types of contact such as sliding. Contact with744

fingers such as holding and grasping have not been con-745

sidered yet. Future work that overcomes this limitation746

will enable reconstructing environments including chal-747

lenging objects such as ladders, seesaws, slides, and jun-748

gle gyms.749

In the scene analysis stage, we extracted the inter-750

action behaviors based on the conformity value. The751

method gives satisfactory results when the interaction752

motion is distinguishable from approaching motion, but753

loses accuracy when the two motions are similar as754

shown in Fig. 19 (right). An interesting future direc-755

tion to develop a better method for extracting interaction756

behaviors would be to combine physical characteristics757

of motions, such as momentum and balance, with data-758

driven approaches.759

Lastly, in this work we have not yet provided the760

actual application of our method to estimate interac-761

tion space of objects. While existing motion generation762

methods such as the space-time optimization can uti-763

lize our interaction space, our future goal is to develop764

efficient methods to create realistic human-object inter-765

action motions based on the interaction space.766
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