
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Projective Motion Correction
with Contact Optimization

Sukwon Lee, KAIST and Sung-Hee Lee, KAIST

Abstract—When motion capture data is applied to virtual characters, the applied motion often exhibits geometric and physical errors,
which necessitates a cumbersome refinement process. We present a novel framework to efficiently obtain a corrected motion as well
as its supporting contact information from multi-contact motion capture data. To this end, first, we present a projective dynamics-based
method for optimizing character motions. By carefully defining objective functions and constraints using differential representation of
motions, we develop a highly efficient motion optimizer that can create geometrically and dynamically adjusted motions given reference
motion data and contact information. Second, we develop a contact optimizer that finds a set of contacts that allows the motion
optimizer to generate a motion that best follows the reference motion under dynamic and geometric constraints. This is achieved by
iteratively improving the hypothesis on the best set of contacts by getting feedback from the motion optimizer. We demonstrate that our
method significantly improves the naturalness of a wide range of motion capture data, from walking to rolling.

Index Terms—Character Animation, Motion Capture, Motion Retargeting, Multi-Contact.

F

1 INTRODUCTION

D ESPITE the widespread usage of motion capture data,
obtaining a natural motion by applying motion cap-

ture data to a virtual character still remains a challenging
task. Sensor noise and processing error during the capturing
session can compromise the naturalness of motion data. In
addition, due to size differences between a captured human
subject and a target character, the character, when moving
according to motion capture data, exhibits artifacts, such
as penetration, sliding, and levitation. Therefore, a motion
refinement process, which often requires expensive manual
tuning, is almost always necessary. The refinement becomes
even more challenging if a motion engages multiple contacts
with the environment. This paper deals with correcting
character motion so that it looks geometrically and dynam-
ically natural while creating appropriate, possibly multiple,
contacts with the environment.

Contact detection between a body part moving accord-
ing to motion capture data and the environment is a funda-
mental problem for many data-driven animation processes.
Nevertheless, effective solutions to this problem are rather
rare. A simple approach is to judge that the contact has taken
place if the height and velocity of a body part fall below
certain thresholds [1]; this works fine for motion data with a
low noise level. Due to its simplicity, this method has been
widely used as a preprocess in computer graphics research
[2], [3]. However, because the judgment is made only with
respect to basic kinematic information, for challenging mo-
tions, such as high dynamic or multi-contact motions, the
accuracy drops severely and uniform thresholds over the
motion sequence do not perform properly.

A physics-based approach can provide powerful tools
for physically correcting motion capture data, and re-

• Sukwon Lee and Sung-Hee Lee are with the Graduate School of Cul-
ture Technology, Korea Advanced Institute of Science and Technology,
Yuseong-gu, Daejeon 34141, Republic of Korea.
E-mail: {sukwonlee, sunghee.lee}@kaist.ac.kr

searchers have developed a number of methods in this area,
as will be discussed in Sec. 2. Most methods, however,
assume that the contact information is given as an input. A
notably different method is [4], in which a novel, sampling-
based approach discovers both physically correct motion
and contacts for complex multi-contact motions. This gener-
alization naturally requires heavier computation. Our goal is
not to develop a physics-simulated character but to modify a
motion to make it look dynamically plausible, which allows
us to take an efficient inverse dynamics-based approach.

This paper introduces a novel method to efficiently ob-
tain both natural looking motion and its contact from cap-
tured data of multi-contact motion. Our method is character-
ized by a novel framework that discovers geometrically and
physically realistic motion and its supporting contacts in an
iterative manner. Two major components are a motion opti-
mizer and a contact optimizer. The contact optimizer finds
the optimal contact state sequence, which specifies which
body parts should contact the environment at a certain time
frame. Given the contact state sequence and the reference
motion capture data, the motion optimizer computes a
corrected motion that best follows the reference motion.
The correction is performed with respect to the geometric
feasibilities, such as avoiding environment penetration and
foot sliding, and the dynamic feasibility with respect to the
centroidal dynamics [5]. The quality of the resulting motion
is evaluated by the motion optimizer, and is fed back to the
contact optimizer to discover a better contact state sequence,
which in turn is given to the motion optimizer.

Each optimizer is constructed based on novel contri-
butions. For the motion optimizer to efficiently produce a
plausible motion satisfying a given contact state sequence,
we use an efficient projective dynamics technique [6], which
was originally developed for creating soft body deforma-
tion. In order to adapt this technique to the motion editing
problem, we carefully design constraints with regard to
the geometric and physical correctness, in a form that is

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

applicable to a motion, which is represented as a mesh. In
particular, for fast convergence, geometric constraints such
as pose preservation are expressed in differential coordi-
nates.

The large number of possible contact combinations of
body parts in a motion makes the computation of the opti-
mal contact state sequence very challenging. As a practical
solution to this problem, we develop a sampling-based,
iterative approach that hypothesizes an optimal contact
state sequence and verifies it by measuring its quality in
terms of the error evaluated by the motion optimizer. From
this evaluation, the hypothesis is updated to better estimate
the contact state sequence. Specifically, we solve the contact
optimization as a shortest path problem of a graph, and
develop an algorithm that iteratively learns the nodal costs
of the graph, such that the optimal path in the graph (i.e.,
the contact state sequence) due to the nodal costs leads to
the creation of an optimal motion with minimum cost.

In summary, the major contributions of our method
are a novel, efficient motion optimizer based on projective
dynamics and a novel contact optimizer that discovers
an optimal contact state sequence that enables the motion
optimizer to generate a plausible motion that best follows
the given reference motion.

Our method can be applied to a wide range of mo-
tions, such as walking and running, that have sparse con-
tacts with the environment, multi-contact motions, such
as standing up from a lying pose, and complex motions,
such as cartwheeling. In addition, computation modules are
developed to support parallel computing, and thus motion
correction is achieved within a reasonable time duration as
reported in Sec. 4.

The remainder of this paper is organized as follows.
After reviewing related studies in Sec. 2, we present our
motion correction method in Sec. 3. Section 4 reports our
experiments and analyzes results. Section 5 concludes the
paper after discussing limitations of our method and future
research directions.

2 RELATED WORK

Our work is related to research on motion editing, dy-
namic motion filtering and multi-contact motion generation.
These research topics have been investigated intensively for
decades. In the following, we review previous studies that
are closely related to our work.

2.1 Geometric Motion Editing

Motion editing with geometric constraints is a common
strategy for modeling interaction with the environment [7]
and post-processing movement [1]. A motion graph-based
approach has been shown to create natural motions that
realize varied contact targets [8]. Geometric constraints can
define not only the spatial relationship between the envi-
ronment and a character, but also the relationship between
a characters’ joints [9] and among multiple characters [10],
[11]. In many methods, a discrete Laplacian deformation
[12] is used to preserve details of the source motion while
the overall movement is modified according to the given
constraints. In this paper, we represent a motion as a

mesh that represents the spatial and temporal relationship
of joints, and thus the technique of minimizing Laplacian
energy plays a central role in preserving the style of the
reference motion.

2.2 Dynamic Motion Filtering

Researchers have developed various methods, e.g., [13],
[14], to modify motion cpature data in order to obtain a
physically correct motion.

A popular approach for this is to develop controllers
that drive a physics-based character to track motion capture
data. A proportional-derivative (PD) controller is often used
for this purpose, usually in combination with a balanc-
ing mechanism for locomotive movements. To enhance the
robustness against perturbations, control parameters need
be tuned, either manually [15] or by learning [16]. Since
a PD controller is effective only locally, the global-state
feedback policy has been learned to perform wider ranges
of motions. [17]. The robustness of a PD controller can also
be enhanced by modulating the reference trajectory [18]. Be-
sides the PD control, optimal control schemes have also been
successfully used to track motion capture data [19]. Another
effective approach is to involve dynamics equations of a
character in an optimization to solve for the joint torques
and accelerations [14], [20]. Momentum has been used for
correcting physical plausibility of motion capture data [21].
Involving inverse dynamics analysis and motion priors in
motion capture makes it possible to use sparse sensor set yet
achieve high accuracy in motion capture for a wide range of
dynamic movements [22].

If underlying physical and control parameters are dis-
covered, these can be used to create similar motions in a
different environment, create different motions, and change
character sizes. Liu et al. [23] developed an inverse space-
time optimization to estimate detailed physical and control-
related parameters of human subjects. Fang and Pollard [24]
developed a set of objective functions and constraints that
lead to linear time analytic derivatives, which allow for
faster optimization. Other studies [25], [26] have extracted
essential movement characteristics with respect to reduced
physical models. Dynamic motion filtering has been studied
in the robotics field as well in order to retarget human
motion to robots [27], [28], [29].

Most previous studies on dynamic motion filtering have
focused on creating physically correct motion and have
assumed that the desired contact states, i.e., identification of
body parts that should be in contact with the environment,
are already known from the reference motion data. This is
a reasonable assumption when dealing with motions that
have small number of contacts, such as locomotion, but may
not hold for multi-contact motions, such as stand-up. By
contrast, our method discovers both the physically plausible
motion and the contact states from a reference motion.

2.3 Multi-Contact Motion Generation

Synthesizing physically plausible motion that involves mul-
tiple contacts with the environment is a challenging prob-
lem. As the number of contactable body parts increases,
the number of possible contact states from which a motion

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

generator may need to select an appropriate contact state
increases exponentially [30], [31].

Liu et al. [4] developed a controller learning scheme that
is able to create multi-contact motions, such as rolling, by
combining the strategic sampling of control parameters and
forward dynamics to evaluate the samples. Their following
work [17] composed controllers for which the parameters
are learned from a random walk through the motion capture
data. With these learned controllers, they constructed a
control graph that enables the motion phases to transition
smoothly.

Mordatch et al. [32] synthesized motions involving mul-
tiple contacts with the environment or with other characters
under the framework of space time optimization, without
using reference motion data. To guide faster convergence to
the optimum, they introduced an auxiliary variable to deal
with the discontinuity incurred from contact transitions.
The auxiliary variable balances the physical validity and
the convergence to the solution. Their method inspired our
contact optimizer in that the auxiliary variable serves as a
contact indicator or a contact probability. Similarly, our con-
tact state sequence indicates the contact of candidate body
parts. The differences are that our contact state sequence is
composed of binary variables whereas the auxiliary variable
is continuous, and our method is to find a proper contact set
underlying the motion capture data instead of generating a
task-based motion.

Posa et al. [33] developed a direct trajectory planning
method that resolves contact constraint forces while simul-
taneously optimizing a trajectory that satisfies the comple-
mentarity constraints due to contact.

Due to the high dimensions of the solution space, multi-
contact motion planning is generally solved via a sampling-
based approach, in which a set of candidate contact points
are sampled on the environment and the reachability of the
contact points are examined [34]. In order to efficiently find
valid contact points and associated natural motions, motion
capture data have been utilized for multi-contact motion
planning, in the form of simple sets of motion clips [35],
transition graphs of contact configurations [36], and contact
graphs with feasibility predictors [37]. Rather than focusing
on finding optimal contact positions from the environment,
our work tackles the problem of determining the optimal
contact state for significantly increased number of candidate
body parts. Regarding contact positions, we simply select
the closest point from a contacting body part as the target
contact position under the assumption that the motion and
the environment can be roughly aligned by the user.

3 METHODS

Figure 1 describes our framework. Our system takes a
captured motion as input and outputs motion optimized
with respect to the given geometric and physical proper-
ties of a character and its contact information. A motion
is represented with 3D mesh vertices v, which identify
positions of every joint during the motion. The motion
optimizer produces a physically plausible motion satisfying
a given contact state sequence C. The contact state sequence
represents the contact state at each time frame t as the list
of body parts in contact with the environment. The error e

𝐶𝐶 Motion
Optimizer

𝐶𝐶, 𝑣𝑣 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑞𝑞

𝑒𝑒
Predictor

feedback

measurePredict

Verifying

Inverse Kinematics

Closed-loop

𝐶𝐶 Motion
Optimizer 𝐶𝐶, 𝑣𝑣 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑞𝑞

𝑒𝑒
Contact

Optimizer
feedback

measurePredict

Verifying

Inverse Kinematics

Closed-loop

Fig. 1: Overview of our framework.

determined by the motion optimizer represents the quality
of the produced motion; this information is fed to the contact
optimizer, which can then generate a better contact state
sequence. The contact optimizer generates the contact state
sequence C by solving the minimum cost path problem of a
graph that represents all possible contact state sequences. In
order to generate an optimal contact state sequence that will
lead to the optimal motion with minimum error e, the nodal
costs of the graph are learned iteratively in a closed loop by
hypothesizing a contact state sequence and verifying it with
the motion optimizer. Since our motion optimizer works on
joint positions, we finally solve the inverse kinematics to
obtain the character animation.

Hip(HIP)

Head(HE)

Left hand(LH) Right hand(RH)Thorax(TH)

Right femur(RFE)

Left tibia(LTI)

Left toes(LT) Right toes(RT)
Left foot(LF) Right foot(RF)

Right tibia(RTI)

Left femur(LFE)

Fig. 2: Contactable joints of our character.

Character Model and Motion Representation

The character model used for our experiments has 31
joints and 62 degrees of freedom, same as the one in
the CMU motion database. It is more reasonable to use
the representative subset of the joints for finding contact
sequence, we select 13 contactable joints as shown in Figure
2. The model has the mass of 70 kg in total, which is
distributed over the body according to average human
body ratio. Since our objective function terms are defined in
the world space, such as the position of the contact with the
nearest part of the environment or the acceleration of the
center of mass, we use joint positions instead of joint angles
for motion editing. Let us represent a character’s pose with
|vt| vertices (vt ∈ RJ×3 where J is the number of joints). A
motion with T frames consists of |vt| × T vertices and the
motion vertices are denoted as the variable v (∈ RJT×3) .

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

We construct a mesh-like structure by connecting vertices
with two types of edges as shown in Fig. 3; One is the
bone edge that connects a child joint vc to its parent vp at
the same frame t, and the other is the joint trajectory edge
that connects joint positions between adjacent frames.After
converting joint positions to a mesh, the solver can perform
motion editing with appropriately defined constraints.

𝑣𝑣𝑡𝑡−1head
𝑣𝑣𝑡𝑡head

𝑣𝑣𝑡𝑡nect
𝑣𝑣𝑡𝑡−1nect

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑗𝑗𝑡𝑡𝑡𝑡𝑗𝑗𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡

𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡 𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡

Fig. 3: Mesh representation of motion.

3.1 Motion Optimizer
We briefly review the local/global alternating solver of
[6] here. By introducing auxiliary variables pc on each
constraint c, the local step projects pc onto the constraint
manifold such that the potential is minimized. A general
form of the constraint potential W is written as

W (pc) = wc‖Acv − pc‖2 + η(pc), (1)

where pc is an auxiliary variable for constraint c, and η(pc) is
an indicator function that returns a value of zero if pc is the
set of the desired configuration and returns +∞ otherwise.
The matrix Ac represents the relationship of joint positions
and its specific structure is defined by the constraint. In the
local step, since the global variable v is treated as constant,
pc is projected to the constraints packed in η(pc) while
minimizing the potential function (1). In addition, every
constraint of potential function is independent of each other,
which allows parallelization of a local step. After projecting
every auxiliary variable, a global step merges them into a
global variable v in the least-squares manner.

arg min
v

∑
c

wc‖Acv − pc‖2 (2)

This equation is the same as

arg min
v
‖Av − p‖2, (3)

where the matrix A is a stack of all wcAc by row, and p is
also a stack of all wcpc. The global step updates the global
variable v (the joint vertices) by minimizing (3) while keep-
ing the auxiliary variable p fixed. Solving the global step
includes an expensive operation of computing the inverse
of A, but this can be pre-computed because A is constant
while the contact state sequence remains unchanged. When
we need to change a contact configuration, a multiple rank

update method can be applied, which only requires a few
milliseconds, if the number of updated contacts is relatively
smaller than the size of A. If not, the matrix A is re-
computed as in the initializing step. The alternating solver
has strong advantages of simplicity and robustness because
it decouples a potential function into the Euclidean distance
and constraint parts; this encapsulates the non-linearity of
the constraint with each auxiliary variable.

3.2 Potentials and Projection Operators

In this section, we explain the potential functions designed
for the motion refinement problem and their projection
operators. As explained above, an input motion has a mesh-
like structure as shown in Figure 3, and thus the potential
functions work on the joint vertices. To construct a potential
function, the matrix Ac needs to be configured with respect
to the input, that is the contact state sequence C. For
example, the ground constraint, which causes a joint to
plant itself on the ground, is configured according to each
contact state specified in C. Most of our potential functions
do not modify the input C and thus, the matrix A remains
as a constant and it helps the optimization converge in
a fast speed with pre-computed inverse matrix A−1. One
exception is the input-independent penetration potential
(Sec. 3.2.6), which directly modifies A when v violates
the penetration constraint. Even in this case, A−1 can be
updated efficiently by the multiple rank update method
because the modified number of rows is relatively small.

3.2.1 Bone Length

Joint angle representation naturally satisfies the bone length
constraints, but the world space operation on the joint angle
coordinates requires repetitive computation of the Jacobian
matrix, which is an expensive operation. Operating on joint
positions v is more intuitive for dealing with the world
space constraints, but we need to enforce the bone length
preservation explicitly. In our motion optimizer, the bone-
length constraint is treated as a soft constraint that allows
a small violation, which helps the solver converge by com-
promising conflicts with other constraints. The bone-length
constraint specifies the distance between vertices in bone
edges,

Wbl(pbl, l) = wbl‖Ablv − Pbl(v, l)‖2 + η(pbl(v)), (4)

Pbl(v, l) = l
vc − vp
‖vc − vp‖

, (5)

where l is the original length of the bone corresponding to
vc and vp, and pbl(v) checks the violation of the bone length.
The matrix Abl is constructed such that Abl v outputs vc−vp
for all joint and time. The projection operator for the bone-
length Pbl projects the vector vc−vp on the closest constraint
manifold, leading to a vector with the same direction but
length scaled to l. Note that the potential function forms
differential coordinates. Since the differential coordinates
are invariant to translation, the convergence rate does not
degrade due to the translational movement.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

3.2.2 Joint Trajectory

The joint trajectory potential encourages the motion to
follow the reference motion style with respect to the joint
trajectory edges along the time. To preserve the style of the
motion despite the changes in the contacted positions, we
define this potential using the Laplacian energy minimiza-
tion [12]. The potential function is

Wj(δ
ref
j) = wj ||Ajv − δrefj ||

2, (6)

where δrefj represents the differential coordinates of the joint
trajectory edges of the reference motion, and Aj is a discrete
Laplacian matrix that results in the differential coordinates
of the multiplied vertices v. Hence, Aj vref results in δrefj

where vref are the joint vertices of the reference motion.
More specifically, Aj is a stacked matrix of the first order
discrete Laplacian matrices corresponding each joint and
time; i.e.

Aj(t) =

 Aj(1, t)
...

Aj(B, t)

 (7)

Aj(b, t) v =
1

2
(vbt−1 + vbt+1)− vbt . (8)

Since Wj plays the role of suggesting the desired motion
style, the violation indicator function, η(pj), is removed
from the potential (Eq. 6), and thus it has a high chance
of being violated. In addition, to avoid unnecessary conflict
with the other constraints,Wj is not applied to the contacted
joints, which are included in the contact state sequence C.
Instead, these joints are handled by non-slip and ground
contact constraint, as explained next.

3.2.3 Non-Slip and Ground Contact

This potential is applied only to the joints belonging to the
contact state sequence. Let us assume (c, t) ∈ C where c is
a contact configuration, i.e., c = {b} for the contacted body
parts b. Then, the set of body parts {b} should be planted
on the ground and not move from time t − 1 to t. To this
end, we define a non-slip potential and a ground contact
potential to prevent a contacted body part from moving or
floating above the ground.

Wsg(c, t) = wsg‖Asg(c, t) v − Psg(c, v)‖2 + η(psg(c)), (9)

where psg(c) checks whether the contacted body parts are
floating or not. For the non-slip potential, Asg(c, t) gives
the vector of edge from previous joint vbt−1 to current vbt ,
and the projection operator Psg causes the magnitude of the
vector to become zero. For the ground contact potential, Psg
projects vbt onto the ground by setting its height to zero.
If contact is to be made against some complex environ-
ment, the closest point is used for the projection operator.
The ground potential only works on the set of contacted
body parts {b}, and does not prevent other body parts of
the character from penetrating into the environment. The
penetration will be dealt with by the penetration potential
introduced in Sec. 3.2.6.

Left arm

Right arm

Left leg

Right leg

Fig. 4: Each limb mesh is visualized in different colors. Only
vertices and edges corresponding to one time frame are
shown.

3.2.4 Reference Pose

Similar to the joint trajectory potential, the reference pose
potential, with a small weight value, acts as a guide term
to help preserve the spatial relationship of bone edges in
each time frame. Many previous studies have defined the
pose difference in terms of joint angles but, in our case,
the reference pose cost needs to be evaluated with respect
to the joint positions similar to the cases of the interactive
mesh [9] or the Laplacian deformation energy [12]. After a
number of trials to find a suitable pose cost that efficiently
preserves the pose style while not significantly affecting the
other potentials, we determined the reference pose potential
as follows. We first define the limb meshes by separating
sub-meshes corresponding to each limb of the character and
connecting edges from terminal vertices to the root (Fig. 4),
and then apply a discrete Laplacian to each limb mesh.

Wpose = wpose ‖Aposev −Aposevref‖2 . (10)

In this equation, Apose is a discrete Laplacian matrix that
results in the differential coordinates of limb meshes when
multiplied by the joint positions. Similar to Aj of the
joint trajectory potential, Apose is the stacked matrix of the
Laplacian matrix corresponding to each limb. The projection
operator of this potential is Aposevref , which is constant.

The structure of our body mesh in Fig. 4 is different from
denser body meshes, which directly connect end-effectors,
used in previous work such as [9]. Denser mesh preserves
the overall pose better, but we found that it may cause un-
intended consequences. For example, when a foot identified
to be the contact state is moved towards to the ground,
it may change the contact state of other end-effectors that
are already in the desired state. However, there can be
cases that our sparse body mesh may lose the semantics
of input motion, e.g., two holding hands can be separated
as the optimizer ignores the distance between two hands. In
general, the structure of an ideal body mesh depends on the
content of the motion.

3.2.5 Dynamic Balance

In order to check the state of dynamic balance, the projection
operator examines whether the acceleration of the center of
mass (CoM) is admissible given the set of contact points and
friction cones. The global dynamics with respect to the rates

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

Friction Cone

45°10cm

Fig. 5: Each joint has 3 (i.e., minimal number for balance
maintenance) contact points, which are distributed around
the joint with an appropriate radius (5cm in our examples).
An approximated friction cone at a contact point of the right
toes (RT) joint is shown in wireframe.

of change of linear momentum l and angular momentum k
is

l̇ =
∑
i

fi +mg (11)

k̇ =
∑
i

ri × fi (12)

In these equations, fi is the ground reaction force (GRF)
acting on each contact point i, m is the mass of the character,
g is the gravitational acceleration, and ri is the vector from
CoM to the contact point i. Therefore, we can verify the
admissibility of the dynamic balance by checking whether
any set of fi can satisfy (11) and (12). If not, the projection
operator corrects the value of l̇ so that the external forces,
i.e., GRFs and gravity, can support the acceleration of CoM.
To obtain a corrected l̇, we compute GRFs that make the
admissible momentum rate change as close as possible to
the current one, as the solution of the projection operator.
This equation is written as

argmin
β∈R4N ,τ∈R3K

wl̇‖l̇(v, t)−
N∑
i

V βi −mg‖2+

wk̇‖k̇(v, t)−
N∑
i

ri × V βi −
|c|∑
i

τi‖2+

wβ‖β‖2 + wτ‖τ‖2

s.t. Vyβi ≤ fmax,
0 ≤ β,
‖τ‖ ≤ τbound

(13)

where N is the number of contacts, |c| is the number
of contacted joints, and τ = [τ1 · · · τ|c|]T represents small
torque allowed to act on the contacted joints. We found
that (12) can be satisfied imperfectly because the contact
configuration might not be able to generate the necessary
torque, and that introducing a small τ helps the estimation
of the GRF be more stable. The maximum magnitude of
τ is bounded by setting τbound = 10Nm. The GRF f is
represented using four basis vectors V that approximate the
friction cone, i.e., fi = V βi, where β ≥ 0 because the GRF
must be unilateral in nature (Fig. 5). The basis vectors V are
rotated to have the same normal with the environment. The
parameter fmax constrains the maximum value of normal
component of GRF, and its effect will be discussed in Sec. 4.

(a) Reference motion (b) Refined motion

Fig. 6: Penetration constraint pushes the body up to the
surface; inverse kinematics aligns the normal of the hands
to that of the ground.

The linear and angular momentum rate change functions
l̇(v, t) and k̇(v, t) over current joint positions v are computed
as follows.

l̇(v, t) =
mχ̈t
∆t2

(14)

k̇(v, t) =
B∑
b

mb(r
b
t × χ̈bt + ṙbt × χ̇bt) (15)

where χ is the position of the whole body CoM, and mb

and χb represent the mass and the CoM of body part b.
Because the CoM of a body part cannot be determined from
the joint vertex v exactly, we assume the body CoM lying on
the middle point of the child and parent vertex. The whole
body CoM χ is then computed as the sum of each body CoM
χb multiplied by its mass mb, and rb = χb−χ. The duration
of time step ∆t is set to 1/30 seconds in our examples. In
Eq. (15), k̇(v, t) computes the rate change of the angular
momentum by approximating each part’s inertia as a point
mass at its CoM. For computing acceleration and velocity
on the joint vertex, we discretized these continuous quantity
with the previous frame vt−1 and the next vt+1 such as

v̇b = vbt+1 − vbt
v̈b = vbt+1 − 2vbt + vbt−1.

(16)

With the optimized β∗, the admissible momentum rate
change can be easily computed as

l̇adm(c, v, t) =
N∑
i

V β∗i +mg. (17)

Then the dynamic balance potential is computed as

Wl̇ = wl̇‖Al̇v − l̇adm(c, v, t)‖2 + η(padm(l̇)), (18)

where Al̇ is constructed to output l̇(v, t) in Eq. (14) when
multiplied by v, and padm(l̇) verifies whether l̇ is admissible.

3.2.6 Penetration
Penetration avoidance potential is added to prevent a char-
acter body from penetrating into the environment; it is
stated as follows.

Wpene = wpene‖Sv − Ppene(v)‖2 + η(pout(v)), (19)

where pout(v) checks the penetration. This equation is sim-
ilar to the ground constraint Eq. (9) except that this applies

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

to all joints. The matrix S is a selection matrix that indicates
which body part is in collision with the environment. The
operator Ppene projects a penetrating joint vertex vb onto
the closest boundary of the environment. For a skinned
character, we allow a joint vertex to have a bounding sphere,
and the penetration detection and projection are performed
with respect to the sphere (Fig. 6).

With these potentials designed for the motion editing
problem, the motion optimizer produces a motion that
satisfies a given contact state sequence while following the
motion style of recorded data. Every potential has their
projected positions and are merged into a global variable
while the importance of each constraint is controlled by the
weights. Table 1 shows the weights used in our experiments.

TABLE 1: Weights for each potential.

Potential Weight

Bone-length 1.0
Joint trajectory 1.0

Non-slip & ground contact 1.0
Reference pose 0.1

Dynamic balance ∆t2/m

Penetration 0.5

3.3 Contact Optimizer

The contact state sequence C specifies which body parts
should contact the environment, and thus directly controls
the non-slip and ground contact potentials of the motion op-
timizer. Given C, the motion optimizer then finds a motion
that satisfies dynamic balance and follows reference motion
as much as possible. Hence, the quality of the produced
motion greatly depends on the quality of C. We measure
the quality of a motion in terms of some selected potentials
of the motion optimizer, i.e., joint trajectory, reference pose,
and dynamic balance. The first and second potentials mea-
sure the deviation from the reference motion, and the third
one evaluates how well C support the motion. With these
potentials, we aim to achieve an optimal C that will produce
the lowest sum of the potentials.

e =
P∑
i

‖Aiv − pi‖2, (20)

where P includes only the terms for joint trajectory, refer-
ence pose, and dynamic balance. To search for an optimal
C, we represent the space of C with the directed acyclic
graph (DAG) G, in which each node represents a contact
configuration c at a certain time frame t as shown in Fig. 7.
In graph G, dubbed the contact state graph in this paper, we
list all possible nodes, and thus, the total number of nodes
amounts to 2B × T where B is the number of body parts
that can contact the environment. The edges completely
connect all nodes at t − 1 to all node at t. Then the contact
optimization can be formulated as the optimal path finding
problem in G.

If the cost of a path can be decomposed into the path-
independent costs of nodes and edges in the path, the
optimal path can be obtained very efficiently because then

⋮ ⋮ ⋮

𝑡1 𝑡2 𝑡𝑇⋯

𝑐1 = {∅}

𝑐2 = {𝐿𝑇}

𝑐24−1 = {𝑅𝐻, 𝐿𝐻, 𝑅𝑇}

𝑐24 = {𝑅𝐻, 𝐿𝐻, 𝑅𝑇, 𝐿𝑇}

⋯

⋯

⋯

⋮

c

Fig. 7: A contact state graph G represents all possible contact
states and transitions. The candidates of contact body is
{RH,LH,RT,LT}, and thus the total number of possible c
is 24.

we only need to compute the costs once for every node
and edge. In our problem, however, the nodal cost depends
on the path because the resulting pose at t may depend
on a particular contact configurations at the previous time
frames.

To cope with this challenge, we developed a novel con-
tact optimizer that finds the optimal path in a reasonable
time. Computational efficiency and reasonable optimality
are achieved by following components. First, by carefully
designing the path-invariant, approximate cost of the nodes
in G, we make it possible to use efficient shortest path
algorithms for DAG. To this end, the cost of each node is
computed purely based on the reference pose correspond-
ing to the node, independent of any path. Specifically, the
elements of cost, i.e., pose style, slipping, and dynamics, are
computed from a pose created by modifying the reference
pose. The cost computed this way is of course different from
the true cost output by the motion optimizer. Our goal,
rather than accurately predicting the error of the motion
optimizer for the optimal path, is to determine the nodal
costs such that they are good enough to find the optimal
contact state sequence.

Second, the nodal costs are adjusted to produce the
optimal path that will minimize the error of the motion
optimizer. A nodal cost is determined by the weighted aver-
age of the sub-costs, as will be discussed shortly, where the
weights control the relative importance of the sub-costs, and
we approach the problem of finding the optimal nodal costs
as a problem of finding the right weights for the sub-costs.
This strategy is based on our experience that appropriate
weights that produce natural motions vary depending on
the motion. By iterating hypothesizing and correcting the
statistics of the weights from the simulations, we obtain the
optimal weights.

3.4 Elements of Graph Costs

This section explains the elements of the nodal cost and the
edge cost in contact state graph G. Under the assumption
that the optimized motion retains the style of the reference
motion, to compute the nodal cost, we create a pose by min-
imally modifying the reference pose to satisfy the contact

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

Fig. 8: Poses that correspond to instances of c, {RT,LT}
(left), {RH,RT,LT} (middle), and {RH,LH,RT,LT}
(right).

state specified by the node. The nodal cost has the form of
the weighted average of sub-costs:

µpose(t)Lpose(c, t) + µdyn(t)Ldyn(c, t) + µslip(t)Lslip(c, t)

where
µpose(t) + µdyn(t) + µslip(t) = 1. (21)

The cost of a node (c, t) ∈ G represents the approximated
error due to the contact state, and the weight value µ con-
trols the importance of the sub-cost for reducing the motion
error e. The individual sub-cost functions are explained
next.

3.4.1 Pose Style
This cost measures the deformation energy with the limb
mesh discussed in Sec. 3.2.4. To evaluate the energy of
a given contact set (c, t), we make the joints as marked
contacted by c plant the ground while minimizing the
deformation error. The pose style cost is then defined as

Lpose(c, t) = ‖Apose(t) v∗(c, t)− δref (t)‖2 (22)

where Apose(t) are from Sec. 3.2.4, which is a submatrix cor-
responding to time frame t. The vector v∗(c, t) approximates
the joint positions at time t given contacts c as

v∗(c, t) = argmin
v
||

 Apose(t)
Asg(c, t)

εI

 v −

 δref (t)
Psg(c, vref)

εvref

 ||2
(23)

This function predicts joint positions when the contact
configuration c is given, and it enables Lpose to approximate
the deformation cost of the limb mesh. In Eq. 23, the top
row encourages preserving the differential coordinate of the
reference pose, δref , and the second row makes the joints in
the contact state c to plant to the positions Psg . The bottom
row guides the joint position to the reference where ε makes
this term much weaker than other terms. Figure 8 shows
three different poses obtained from the same reference pose
with different contact states specified. Note that Eq. 23 has
no dependence on the state of v, and thus all nodal costs can
be computed without the motion optimization.

3.4.2 Dynamics
Evaluating the dynamic plausibility from the obtained pose
fv(c, t) above is not path invariant because the rate of
change of momentum depends on the nodes at previous

(a) µpose = 0.33, µdyn = 0.33, µslip = 0.33

(b) µpose = 0.2, µdyn = 0.8, µslip = 0.0

(c) µpose = 0.1, µdyn = 0.9, µslip = 0.0, divergence=3

(d) µpose = 0.1, µdyn = 0.9, µslip = 0.0, divergence=5

Fig. 9: Contact state sequences of a walking motion
with different weights. In this example, the weights are
kept constant over time. The two rows denote {RT (first
row), LT (second row)} and a black cell at t mean the body
part is in contact with the environment at that time.

and posterior time steps. Instead, we evaluate whether a
given contact state c can generate the linear momentum rate
change calculated from the reference motion. Addressing
the dynamics cost this way makes the dynamic admissibility
independent of the neighboring contact states. The cost is
then defined as

Ldyn(c, t) = ‖l̇adm(c, vref , t)− l̇(vref , t)‖2, (24)

where l̇adm(c, vref , t) returns an admissible l̇ given contacts
c, and l̇(vref , t) is l̇ of the original motion at time t. This
cost is similar to that of the balance constraint in Sec. 3.2.5
except that CoM location is computed from fv(c, t) of the
pose style.

3.4.3 Slipping
This term penalizes a contact state c that includes joints with
a large traveling distance.

Lslip(c, t) =
c∑
b

‖vref (b, t− 1)− vref (b, t)‖2 (25)

This term is related to the joint trajectory potential of the
motion optimizer in that the joint trajectory of a fast moving
joint, if included in c, must deform heavily to shrink to a
single contact point by the motion optimizer.

Until now we have discussed sub-costs for the nodal
cost. Note that our sub-cost terms do not use heuristics, such
as a threshold on the height or speed of a joint, to determine
the contact of the joint. Such heuristics are sensitive to noise
and often fail to find correct contacts for complex motions.

Normalization
Each element of nodal cost has a different scale; for example,
the dynamic cost distributes over 106 but the pose cost
distributes under 10. This may cause a result with severely
biased weights, which could lead to failure of the optimizer.
Thus, we normalize them within the range of [0,1] so that
the weight learning will not be affected by the scale. Because
a nodal cost is independent of temporally adjacent nodes,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

normalization is applied to the nodes in the same time t by
dividing each sub-cost with the maximum value at the time.

3.4.4 Contact State Change
By penalizing the contact state changes across time, we can
reduce unnecessary changes of contact state and thereby
obtain temporally more consistent motion. This is achieved
by applying the edge cost wjump to the edges connecting
two different contact states. Then, the total edge cost is
computed as the number of contact state transitions:

Ljump(C) =
U∑
wjump, (26)

where U is the number of transitions. The weight for this
cost is controlled by the concept of diversity explained in
Sec. 3.5.1.

3.5 Weight Optimization

Having computed the values of the sub-costs of each node,
the task of learning the nodal cost is reduced to finding the
appropriate weights µ(t) ∈ R3 over time. Figure 9 shows
how C is influenced by different weights and divergence
value (Sec. 3.5.1). For example, Fig. 9b has higher weight
for the dynamic cost than Fig. 9a, and thus it has a stronger
tendency to keep contacts with the ground. Similarly, Fig.
9c, which has higher weight for the dynamic cost, shows
longer contact time than Fig. 9b.

We assume that the optimal weights are continuous
functions over time, and model the weights as simple piece-
wise linear functions, with control weights are defined at
key frames distributed in equal interval over time. There-
fore, the dimension of the weight space is 2 × K where
K denotes the number of key frames. To find the optimal
control weights, we adopt the sampling approach of [38],
which is modified to enforce the sum to unity constraint
(Eq. 21). Our modified algorithm is explained next.

First, initial samples s ∈ R2K are picked uniformly over
the whole variable space. In our experiment, the number
of initial samples is 100, which is 10% of total samples.
Each sample corresponds to a weight function. By applying
sampled weights to the nodal costs of the graph G, the
optimal path C can be searched and an error e of C is
evaluated by the motion optimizer.

Second, the optimizer selects the most probable sample,
with its probability determined by its error e and volume.
The volume of a sample is measured as the volume of
the Voronoi cell containing the sample. If a sample has
larger volume than others, the density around that sample
is lower and thus more exploration is needed. In addition,
a sample with a lower error indicates that good samples are
in close proximity. In order to pick a sample that has sparser
density and lower error, we set the probability of a sample
proportional to its volume divided by the error. The reason
why we use Voronoi cells instead of the kd-tree as in [38]
is that the space of our samples is not a hypercube due to
the constraint of Eq. 21. Computation of the approximate
Voronoi cell volume can be performed fast enough.

Next, a new sample is located in proximity to the se-
lected sample. Specifically, the location is sampled from the
multivariate Gaussian, with its mean set to the selected

sample. Its covariance matrix is set to a diagonal matrix,
with each diagonal element being the edge length of the
bounding box of the Voronoi cell. Setting the variance to the
length of the bounding box makes Gaussian function large
enough to cover the cell, and it helps prevent falling in local
minima.

Lastly, with the new sample, the volume and the error is
updated for the next iteration. The optimization terminates
when the iteration number reaches the predefined number.
Figure 10 shows a weight sampling process at one key frame
(K=1). Each axis represents µpose and µdyn respectively, and
the diagonal boundary is the line where µslip = 0 because
of the sum to unity constraint. The volume of the cell is
identical to the volume of the convex hull that resides in the
sample space.

Algorithm 1 Optimizing weight with adaptive sampling

1: Ldyn,pose,sli : Matrices of nodal sub-costs.
2: M : Number of initial samples.
3:
4: function EVALUATESAMPLE(s)
5: G← 0 ∈ R2B×T

6: for t = 1 · · ·T do
7: i← An index of segments of time t.
8: µdyn,pose,slip ← LINEARINTERPOLATE(si, si+1, t)
9: G(t)←

∑dyn,pose,slip
j µjLj(t)

10: end for
11: C← SEARCH(G)
12: (e, v∗)← MOTIONOPTIMIZER(C, vref)
13: return e
14: end function
15:
16: function OPTIMIZING WEIGHT
17: S← {ø} . The set of samples.
18: // Initial sampling.
19: for i = 1...M do
20: s← Uniformly draw a sample.
21: S← S ∪ s
22: ei ← EVALUATESAMPLE(s)
23: end for
24: V ← COMPUTEVOLUME(S)
25: W = V/e
26: // Adaptive sampling.
27: while n(S) < maxSample do
28: s← Draw a sample with the probability ∝W
29: s′ ∼ N (s, LENGTHOFBOUNDINGBOX(s))
30: S← S ∪ s′
31: ei ← EVALUATESAMPLE(s′)
32: V ← COMPUTEVOLUME(S)
33: W = V/e
34: end while
35: return the best sample in S.
36: end function

Algorithm 1 shows the contact optimization process. The
pre-computed sub-nodal costs are stored in the matrices L,
where each row lists all candidate contact states. Line 7
retrieves the index of piece-wise linear function that in-
cludes time t, and the weights µdyn,pose,slip at t are linearly
interpolated between the weights si(∈ R3) and si+1.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) 17th iteration

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) 18th iteration

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) 19th iteration

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) 99th iteration

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 10: Voronoi diagram of the sampling procedure for a single key frame (K = 1). Only the first two axes for µpose and
µdyn are shown. Each cell contains a sample, and our adaptive sampler picks a sample according to the volume of cell and
the error. In (b) and (c), the white cell indicates a new sample in that iteration. Error values of the motion optimizer are
shown in color.

3.5.1 Controlling Diversity
We now explain the method for adjusting the edge weight
wjump, which controls the degree of suppression of the
contact state transitions. Unlike the nodal weights, the edge
weight functions as a constraint and is not included in
the weight optimization. If it were included in the weight
optimization with the other nodal weights, the edge weight
would be optimized to zero so that the minimum error
path could be searched without restricting contact state
transitions.

To control the edge weight, we introduce a diversity
index to measure the complexity of the contact states. The
diversity index [39] was originally developed to represent
the diversity of a species, and here we use it to measure the
diversity of contact states in a contact state sequence. This
index has an advantage of providing an intuitive parameter
that allows users to control the complexity of the contact
states. The diversity of the contact states is defined as

D(C) = exp(−
R∑
p(c) ln p(c)), (27)

where p(c) denotes the frequency of a contact state c in a
given contact state sequence andR denotes the total number
of contact state types in the sequence.

Before running the motion optimizer to evaluate the er-
ror of the contact state sequence, we measure the diversity of
the sequence. If the diversity is higher than a user-specified
value (Fig. 9d), which means the contact state sequence
contains too many transitions, then wjump is increased to
lower the complexity (Fig. 9c). We found that the diversity
index is more intuitive to control the contact complexity of
a motion than directly controlling the weight value wjump.

3.5.2 Inverse Kinematics
Using the final weights of the graph, we find the optimal
contact state sequence, from which we obtain optimized
trajectories of joints that are dynamically plausible while
being similar to the reference joint trajectories. Using these
results, we perform inverse kinematics to compute the joint
angles of characters to follow the joint trajectories while
minimizing joint accelerations and respecting joint limits. In

addition, since only the joint positions of the end-effectors
are specified, we need to determine the orientation of the
end-effectors, which is done such that the end-effectors
have the similar orientation as those of the reference motion
while they do not penetrate into the environment. When an
end-effector is in contact state, we align its desired normal
direction with that of the environment.

4 EXPERIMENTS AND RESULTS

(a) Reference motion

(b) Refined motion

Fig. 11: Results of correcting running motion.

We tested our framework on various scenarios and val-
idated the naturalness and the physical correctness of the
generated motions. Tested motion clips were selected from
the CMU motion database to have diverse characteristics,
such as low and high dynamics, short and long contact
duration, and complexity of environment. Selected motions
were generally considered to be difficult to analyze or edit.
With these motions, our framework produces dynamically
filtered motions and corresponding contact information. As

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

(a) Reference motion

(b) Refined motion

Fig. 12: Results of correcting cart-wheel motion.

pre-process, we apply a Gaussian filter to the joint angle
trajectories and downsample the motion data from 120Hz
to 30Hz (60Hz for the cartwheel motion). Sometimes, the
motion data contain axially twisted joints, and such joints
cannot be corrected by our framework as our framework
deals only with joint positions. Such artifacts are removed
in the inverse kinematics stage, with post-processing to fix
unnatural looking motions as detailed in Sec. 3.5.2.

There are several parameters used in the contact opti-
mizer; most of them are insensitive to motions and can
be applied uniformly. Weight functions are divided into 5
segments and each of them has 0.5 ∼ 1 sec long. In addition,
the number of the sample is set to 100, which is enough
to converge for most of examples. On the other hand, the
diversity value and the maximum GRF (fmax in (13)) at each
contact point are adjusted depending on the input motion;
these values and the list of contact candidates are shown in
Table 2.

During experiments, we found that lower fmax shows a
tendency that the contact sequence maintains longer contact
duration to accelerate the CoM. Conversely, higher fmax re-
sults in more bouncing motion with shorter contact duration
because shorter time is necessary to accelerate the CoM if
larger impulse from the environment is allowed. However, if
fmax is too low to reproduce the acceleration of the reference
motion then the dynamic cost (Eq. 24) contains inaccurate
values to evaluate C. Reasonable results are obtained if
fmax is set higher than 200N.

Walking and Running
For walking and running motions on flat ground, both feet
and toes are set as contact candidates. The original motion
clip (Fig. 11a) has the toes airborne and sliding when they
should be planted on the ground, and our method detects
appropriate contacts and refines the whole body motion as
shown in Fig. 11b.

TABLE 2: Parameters for the contact optimizer.

Experiments Diversity fmax Contact Candidates

Walking 15 200 LT, RT, LF, RF
Running 15 500 LT, RT, LF, RF

Standing Up 30 1000 LT, RT, LF, RF, LTI, RTI, LH, RH
Cartwheeling 20 1000 LT, RT, LF, RF, LH, RH

Dancing 20 1000 LT, RT, LF, RF, LH, RH
Rolling 20 200 LT, RT, LH, RH, TH, HE, HIP

Sitting on Chair 20 300 LT, RT, LFE, RFE, LH, RH

Figure 13a shows a result that a level walking motion
is applied to a hill environment. All the parameters remain
the same as those in the level walking example. Despite
the relatively steep slope, the resulting motion is quite
reasonable.

Standing Up
Figure 13b shows a result that corrected a standing up
motion. The transition from lying to standing includes fre-
quent changes of contact, which is more complex than other
example motions. Moreover, it has eight contact candidates
and thus this motion requires the highest diversity value
among the experiments.

Cartwheel and Dance
Our next experiment is correcting cartwheel motion as
shown in Fig. 12. Because these motions exhibit vigorous
momentum rate changes, it is challenging to analyze their
dynamics. Moreover, captured poses contain high degrees of
artifact due to the difficulty of capturing quickly changing
motions. Therefore, we down-sampled the motion at 60Hz,
which is twice as dense as that used for other motions, and
set a higher value for the diversity.

Rolling
Rolling motion (Fig. 13c) shows that the rate of change of
momentum is relatively more stable than those of other ac-
robatic motions, but a large portion of occluded body causes
many artifacts in the motion data. The tested motion clip
includes ankle motions unnaturally rotating back and forth
and physically impossible standing up motion. These severe
artifacts make both the motion and contact optimizations
difficult, and also cause the inverse kinematics to produce
unnatural motions even if the right contact state sequence is
detected. The supplementary video shows that our method
improves the naturalness of the input motion significantly
but could not fix the artifacts to the satisfactory level.

Sitting on Chair
Figure 13d shows a result that corrects sitting motion on a
chair. This experiment shows that our framework can deal
with a more complex environment. As the environment is
modeled as a mesh object, minor changes are necessary for
the constraints of the motion optimizer and the cost of the
contact optimizer. First, for the ground contact constraint,
a joint vertex is projected onto the environment instead of
onto the ground. To this end, we build a convex hull of each
part of a chair so that the projection operator can find the
closest point on the environment quickly using the kd-tree.
Testing penetration into the environment is also performed

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

(a) Hill climbing (b) Standing up (c) Rolling (d) Sitting on chair

Fig. 13: Results of correcting motions.

Fig. 14: The joint hierarchy of the additional characters
used for motion retargeting. They are characterized by long
arms (Chimpanzee) and fat body type (Bunny). Bottom:
Chimpanzee for standing up example and bunny for cart-
wheel example.

with respect to the convex hulls, and if a vertex is found
to penetrate, then the operator of the penetration constraint
pushes the vertex to the closest point on the surface. Second,
fv(c, t) in (23) is modified to create a suitable pose for
the given environment. Eventually, the ground projection
operator Psg(c, vref) is replaced with a modified projection
operator that finds the closest point on the environment.
Note that contacts between the arms and the chair are also
created by our method because the dynamic error of the
motion optimizer decreases by the contacts.

Experiments on Other Characters
To verify the robustness of our method, we applied two
new characters to the examples with the same contact state
sequences. The characters, Chimpanzee and Bunny, have the
identical joint hierarchy with the reference character (Fig.
14) but have different bone length ratios. The chimpanzee
character has much longer arms than human, which may
induce penetration of hands (Sec. 4). The bunny character
has very thick flesh that causes self-penetration. To prevent
this penetration, we attached virtual spheres on spine and
wrist joints and applied penetration potential (Sec. 3.2.6) to
these spheres during the motion optimization. Retargeting
to new character was achieved without difficulty; motion
optimizer takes the contact state sequence, new character

TABLE 3: The total computation time (sec.) for each ex-
ample. The numbers in the parentheses are the average
computation time per frame.

Motion
Motion

optimizer
(0.1)

Contact
optimizer

(0.2)

Number of
Frames

Walking 13.2 17.7 85
Running 8.5 13.2 43

Standing Up 4.98 92.68 162
Cartwheel 11.90 73.51 255
Dancing 11.9 94.8 254
Rolling 8.50 153.29 210

Sitting on Chair 11.58 112.98 238

and the reference motion as inputs, and then generates the
retargeted motion that preserves the original style without
making any serious visual artifacts. Figure 14 (bottom)
shows the snapshot of the retargeted motions.

Implementation Details and Performance
Our framework is optimized for parallel processing in that
each projection operator works independently; evaluating
the samples on the contact optimizer also allows parallel
computation. We experimented with a computer with a
XEON E5-2630v3 CPU, which has 8 cores and 16 threads,
and used OpenMP and the Intel Math Kernel Library
(MKL). The computation time for each example is summa-
rized in Table 3.

Although original motion clips have different bone
lengths, we used the same character across all motions
and our framework robustly worked for all motions. Since
the matrix A, which represents a relationship of constraint
between joint positions, is a sparse matrix, we use the sparse
Cholesky solver, CHOLMOD package [40], to solve (3), and
L-BFGS-B [41] to solve inverse kinematics under the joint
limits.

Figure 15 compares the convergence rate of our motion
optimizer and joint angle-based optimization method. The
latter minimizes the same cost function as the motion op-
timizer except the bone-length constraint that is naturally
satisfied. The LBFGS method was used with analytic Jaco-
bians. The figure shows that our alternating solver reduces
error to a satisfactory level much faster than the joint angle-
based optimization.

Figure 16 shows the error of each potential. All potentials
decrease stably along time. Note that the error of the bone-
length constraint, which strongly affects visual realism,
quickly converges towards zero after 10 iterations.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

Time (ms.)
0 100 200 300 400 500 600 700 800 900 1000

E
rr

or

100

102

Our method
Joint-angle based

Fig. 15: Convergence rates of our motion optimizer (blue)
and a joint angle-based optimizer (orange) for the walking
example.

Iteration
0 5 10 15 20 25 30 35 40 45 50

E
rr

or

0

1

2

3
Bone-Length
Non-slipping
Ground
Joint trajectory
Reference pose
Dyanmic balance
Total error

Fig. 16: Convergence rate of each potential for the walking
example.

5 DISCUSSION AND FUTURE WORK

We introduced a motion correction framework that gener-
ates physically plausible motion as well as its supporting
contact states. The computation time of our method is
relatively short compared with other methods, which is due
to several features of our method.

First, the contact optimizer discovers the optimal contact
state sequence by solving an optimal path finding algorithm
of a graph, which can be performed very efficiently. This
was achieved by approximating the error of a pose corre-
sponding to a contact state by the error of a pose obtained
by modifying the reference pose, under the assumption that
the optimized motion will have similar motion style with
the reference. The actual cost of the graph is learned in an
iterative manner, which shows a fast convergence within a
few minutes or less than a minute. Second, by adopting the
projective dynamics to a character motion editing problem,
we could obtain the optimized motion within a few seconds.
This fast performance of the motion optimizer makes our
contact optimization framework performed in a feasible
time duration. Finally, all of the methods described above
can be processed in parallel, so multicore processors can
speed up the processing.

Our method has several limitations that can be inter-
esting topics for future work. First, the dynamic balance
constraint considers angular momentum only indirectly. The
angular momentum is taken into account when calculating
GRFs (Eq. (13)), but the admissibility of angular momentum
is not enforced explicitly. This scheme is effective when the
reference motion is not severely damaged with respect to
dynamic plausibility. In such a case, like the rolling motion
example, however, our method shows a limited quality in

terms of dynamic accuracy. More direct treatment of angular
momentum may help improve these challenging cases.

Second, we only assumed the unilateral contact with the
environment, and thus motions such as bar hanging cannot
be created. In addition, our non-slip constraint in the motion
optimizer prevents dynamic foot-ground contacts, such as
sliding and compliant contact. One possible solution to
enabling sliding contact would be that the motion optimizer
penalizes only the normal component of contacting body
parts. To this end, the contact optimizer also needs to be
improved so that it can identify a contact to be a sliding or
static contact. Including such contact will increase the range
of producible motions.

Next, we have assumed that the environment of the ref-
erence motion is similar to the target environment, and thus
relatively small modification of motion suffices to restore
the naturalness. In the future, we will improve our method
so that the motion refinement can hold larger change of
environment, such as creating walking motion on irregular
stepping-stones from a normal walking motion.

Lastly, our method deals with only the geometric and
physical feasibilities of input motion but does not consider
other factors related with the naturalness of human motion.
Thus, resulting contact states and points may look implau-
sible despite their geometric and physical correctness. The
diversity term improved the naturalness by suppressing
frequent change of contact but it was not enough. An
important subject for future work is to identify high level
factors for the naturalness of human motion and apply them
to correcting and generating human motions.

ACKNOWLEDGMENTS

This work was supported by ICT R&D program (2017-0-
00162) funded by MSIT/IITP and Basic Science Research
Program (NRF-2017R1A2B2006160) funded by MSIT, Korea.

REFERENCES

[1] L. Kovar, J. Schreiner, and M. Gleicher, “Footskate cleanup for
motion capture editing,” in Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. ACM,
2002, Conference Proceedings, pp. 97–104.

[2] D. Holden, T. Komura, and J. Saito, “Phase-functioned neural
networks for character control,” in ACM Transactions on Graphics
(TOG). ACM, 2017, Conference Proceedings.

[3] T. Kwon and J. K. Hodgins, “Momentum-mapped inverted pen-
dulum models for controlling dynamic human motions,” ACM
Transactions on Graphics (TOG), vol. 36, no. 1, p. 10, 2017.

[4] L. Liu, K. Yin, M. van de Panne, T. Shao, and W. Xu, “Sampling-
based contact-rich motion control,” in ACM Transactions on Graph-
ics (TOG), vol. 29. ACM, 2010, Conference Proceedings, p. 128.

[5] D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a
humanoid robot,” Autonomous Robots, vol. 35, no. 2-3, pp. 161–176,
2013.

[6] S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly, “Projective
dynamics: Fusing constraint projections for fast simulation,” ACM
Trans. Graph., vol. 33, no. 4, pp. 154:1–154:11, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2601097.2601116

[7] M. Liu, A. Micaelli, P. Evrard, and A. Escande, “Task-driven pos-
ture optimization for virtual characters,” in Proceedings of the 11th
ACM SIGGRAPH/Eurographics conference on Computer Animation.
Eurographics Association, 2012, Conference Proceedings, pp. 155–
164.

[8] A. Safonova and J. K. Hodgins, “Construction and
optimal search of interpolated motion graphs,” ACM Trans.
Graph., vol. 26, no. 3, Jul. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1276377.1276510

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

[9] E. S. Ho, T. Komura, and C.-L. Tai, “Spatial relationship preserv-
ing character motion adaptation,” ACM Transactions on Graphics
(TOG), vol. 29, no. 4, p. 33, 2010.

[10] T. Kwon, K. H. Lee, J. Lee, and S. Takahashi, “Group motion
editing,” in ACM Transactions on Graphics (TOG), vol. 27. ACM,
2008, Conference Proceedings, p. 80.

[11] M. Kim, K. Hyun, J. Kim, and J. Lee, “Synchronized multi-
character motion editing,” in ACM transactions on graphics (TOG),
vol. 28. ACM, 2009, Conference Proceedings, p. 79.

[12] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rossi, and H.-
P. Seidel, “Differential coordinates for interactive mesh editing,”
in Shape Modeling Applications, 2004. Proceedings. IEEE, 2004,
Conference Proceedings, pp. 181–190.

[13] S. Tak, O. Song, and H. Ko, “Motion balance filtering,” in Computer
Graphics Forum, vol. 19. Wiley Online Library, 2000, Conference
Proceedings, pp. 437–446.

[14] K. Yamane and Y. Nakamura, “Dynamics filter-concept and im-
plementation of online motion generator for human figures,” IEEE
transactions on robotics and automation, vol. 19, no. 3, pp. 421–432,
2003.

[15] K. Yin, K. Loken, and M. van de Panne, “Simbicon: Simple
biped locomotion control,” in ACM SIGGRAPH 2007 Papers, ser.
SIGGRAPH ’07. New York, NY, USA: ACM, 2007. [Online].
Available: http://doi.acm.org/10.1145/1275808.1276509

[16] T. Geijtenbeek, N. Pronost, and A. F. van der Stappen, “Simple
data-driven control for simulated bipeds,” in Proceedings of the
ACM SIGGRAPH/Eurographics symposium on computer animation.
Eurographics Association, 2012, Conference Proceedings, pp. 211–
219.

[17] L. Liu, M. V. D. Panne, and K. Yin, “Guided learning of control
graphs for physics-based characters,” ACM Transactions on Graph-
ics (TOG), vol. 35, no. 3, p. 29, 2016.

[18] Y. Lee, S. Kim, and J. Lee, “Data-driven biped control,” ACM
Trans. Graph., vol. 29, no. 4, pp. 129:1–129:8, Jul. 2010. [Online].
Available: http://doi.acm.org/10.1145/1778765.1781155

[19] U. Muico, Y. Lee, J. Popović, and Z. Popović, “Contact-aware
nonlinear control of dynamic characters,” ACM Trans. Graph.,
vol. 28, no. 3, pp. 81:1–81:9, Jul. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1531326.1531387

[20] M. da Silva, Y. Abe, and J. Popović, “Interactive simulation
of stylized human locomotion,” pp. 82:1–82:10, 2008. [Online].
Available: http://doi.acm.org/10.1145/1399504.1360681

[21] Y. Abe, C. K. Liu, and Z. Popović, “Momentum-based
parameterization of dynamic character motion,” in Proceedings of
the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ser. SCA ’04. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2004, pp. 173–182. [Online]. Available:
http://dx.doi.org/10.1145/1028523.1028546

[22] S. Andrews, I. Huerta, T. Komura, L. Sigal, and K. Mitchell, “Real-
time physics-based motion capture with sparse sensors,” in Pro-
ceedings of the 13th European Conference on Visual Media Production
(CVMP 2016). ACM, 2016, p. 5.

[23] C. K. Liu, A. Hertzmann, and Z. Popović, “Learning physics-
based motion style with nonlinear inverse optimization,” ACM
Trans. Graph., vol. 24, no. 3, pp. 1071–1081, Jul. 2005. [Online].
Available: http://doi.acm.org/10.1145/1073204.1073314

[24] A. C. Fang and N. S. Pollard, “Efficient synthesis of physically
valid human motion,” in ACM Transactions on Graphics (TOG),
vol. 22. ACM, 2003, Conference Proceedings, pp. 417–426.

[25] Z. Popovi and A. Witkin, “Physically based motion transforma-
tion,” in Proceedings of the 26th annual conference on Computer
graphics and interactive techniques. ACM Press/Addison-Wesley
Publishing Co., 1999, Conference Proceedings, pp. 11–20.

[26] T. Kwon and J. Hodgins, “Control systems for human running us-
ing an inverted pendulum model and a reference motion capture
sequence,” in Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. Eurographics Association,
2010, Conference Proceedings, pp. 129–138.

[27] N. Naksuk, C. G. Lee, and S. Rietdyk, “Whole-body human-to-
humanoid motion transfer,” in Humanoid Robots, 2005 5th IEEE-
RAS International Conference on. IEEE, 2005, Conference Proceed-
ings, pp. 104–109.

[28] S. Nakaoka, A. Nakazawa, K. Yokoi, H. Hirukawa, and K. Ikeuchi,
“Generating whole body motions for a biped humanoid robot
from captured human dances,” in Robotics and Automation, 2003.
Proceedings. ICRA’03. IEEE International Conference on, vol. 3. IEEE,
2003, Conference Proceedings, pp. 3905–3910.

[29] N. S. Pollard, J. K. Hodgins, M. J. Riley, and C. G. Atkeson,
“Adapting human motion for the control of a humanoid robot,” in
Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE Interna-
tional Conference on, vol. 2. IEEE, 2002, Conference Proceedings,
pp. 1390–1397.

[30] C. K. Liu, “Dextrous manipulation from a single grasping pose,”
ACM Transactions on Graphics, vol. 28, no. 3, 2009.

[31] C. Kang and S.-H. Lee, “Environment-adaptive contact poses for
virtual characters,” in Computer Graphics Forum, vol. 33, no. 7.
Wiley Online Library, 2014, pp. 1–10.

[32] I. Mordatch, E. Todorov, and Z. Popovi, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transac-
tions on Graphics (TOG), vol. 31, no. 4, p. 43, 2012.

[33] M. Posa, C. Cantu, and R. Tedrake, “A direct method for
trajectory optimization of rigid bodies through contact,” Int. J.
Rob. Res., vol. 33, no. 1, pp. 69–81, Jan. 2014. [Online]. Available:
http://dx.doi.org/10.1177/0278364913506757

[34] A. Escande, A. Kheddar, and S. Miossec, “Planning contact points
for humanoid robots,” Robotics and Autonomous Systems, vol. 61,
no. 5, pp. 428–442, 2013.

[35] K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, and B. Wilcox, “Mo-
tion planning for legged robots on varied terrain,” The International
Journal of Robotics Research, vol. 27, no. 11-12, pp. 1325–1349, 2008.

[36] C. Mandery, J. Borras, M. Jochner, and T. Asfour, “Analyzing
whole-body pose transitions in multi-contact motions,” in Hu-
manoid Robots (Humanoids), 2015 IEEE-RAS 15th International Con-
ference on. IEEE, 2015, Conference Proceedings, pp. 1020–1027.

[37] C. Kang and S.-H. Lee, “Multi-contact locomotion using a contact
graph with feasibility predictors,” ACM Transactions on Graphics
(TOG), vol. 36, no. 2, p. 22, 2017.

[38] P. Hämäläinen, S. Eriksson, E. Tanskanen, V. Kyrki, and J. Lehti-
nen, “Online motion synthesis using sequential monte carlo,”
ACM Transactions on Graphics (TOG), vol. 33, no. 4, p. 51, 2014.

[39] L. Jost, “Entropy and diversity,” Oikos, vol. 113, no. 2, pp. 363–375,
2006. [Online]. Available: http://dx.doi.org/10.1111/j.2006.0030-
1299.14714.x

[40] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, “Al-
gorithm 887: Cholmod, supernodal sparse cholesky factorization
and update/downdate,” ACM Trans. Math. Softw., vol. 35, no. 3,
pp. 1–14, 2008.

[41] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm
778: L-bfgs-b: Fortran subroutines for large-scale bound-
constrained optimization,” ACM Trans. Math. Softw., vol. 23,
no. 4, pp. 550–560, Dec. 1997. [Online]. Available:
http://doi.acm.org/10.1145/279232.279236

Sukwon Lee is currently a Ph.D. candidate with
the Graduate School of Culture Technology at
KAIST and he received the M.S. degree in Com-
puter Science from Gwangju Institute of Science
and Technology, Korea, in 2013 and B.S. degree
in Computer Engineering from Korea Aerospace
University, Korea, in 2011. He’s research inter-
ests include physics-based character animation
and machine learning techniques for analyzing
human motion data.

Sung-Hee Lee is an Associate Professor with
the Graduate School of Culture Technology
at KAIST. His research interests include au-
tonomous human animation, avatar motion gen-
eration, and human modeling. He received the
Ph.D. degree in Computer Science from Univer-
sity of California, Los Angeles, USA, in 2008,
and the B.S. and the M.S. degree in Mechani-
cal Engineering from Seoul National University,
Korea, in 1996 and 2000, respectively.

