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Abstract
As the deformation behaviors of hair strands vary greatly depending on the hairstyle, the computational cost and accuracy of
hair movement simulations can be significantly improved by applying simulation methods specific to a certain style. This paper
makes two contributions with regard to the simulation of various hair styles. First, we propose a novel method to reconstruct
simulatable hair strands from hair meshes created by artists. Manually created hair meshes consist of numerous mesh patches,
and the strand reconstruction process is challenged by the absence of connectivity information among the patches for the
same strand and the omission of hidden parts of strands due to the manual creation process. To this end, we develop a two-stage
spectral clustering method for estimating the degree of connectivity among patches and a strand-growing method that preserves
hairstyles. Next, we develop a hairstyle classification method for style-specific simulations. In particular, we propose a set of
features for efficient classifications and show that classifiers trained with the proposed features have higher accuracy than those
trained with naive features. Our method applies efficient simulation methods according to the hairstyle without specific user
input, and thus is favorable for real-time simulation.

CCS Concepts
•Computing methodologies → Physical simulation; Clustering and classification; Shape analysis;

1. Introduction

Although physical simulation is an effective means of generating
realistic hair movement, the high computational cost of simulating
hair, which consists of more than 100K strands with countless colli-
sions with the body and other strands, has allowed only offline sim-
ulation mainly for the movie industry [HCL∗07]. While real-time
hair simulations, at least for unconstrained natural hairstyles, are
becoming feasible for interactive games and virtual reality, for in-
stance [HH12], due to recent advances in hardware and simulation
techniques, the rapid simulation of hair in various styles remains a
challenge in the field of computer animation research.

One notable feature of hair is its variety of styles, and the style
defines the distinctive deformation behavior of the hair. For exam-
ple, in a braided hairstyle, strands from the scalp to the beginning
of the braid do not move, whereas strands in the braided part move
in unison. Therefore, it would make sense not to simulate the for-
mer part of the strands, while the latter part may be simulated well
using a wisp model [BKCN03]. This type of movement pattern is
completely different than those used for strands of natural uncon-
strained hair, for which a regular strand-based simulation model is
most appropriate. As such, a reasonable strategy for rapid hair sim-
ulations would be to apply different simulation models to different
strands considering their style.

To this end, we present methods to generate simulatable hair

models from hair mesh models created by artists and to simulate
hair with appropriate simulation methods based on its style. There
are two key challenges in relation to this. First, it is difficult to
reconstruct strands from hair meshes created by artists, especially
for complex styles such as braids. A mesh is typically composed
of a soup of mesh patches. Estimating the degree of connectivity
among patches is necessary for strand reconstruction, but the omis-
sion of hidden parts of strands and the spuriousness of manual cre-
ation pose difficulties. Our solution to this problem is to develop a
two-stage spectral clustering method for estimating the degree of
mesh connectivity, with the initial clustering dedicated to finding
the connectivity of the middle part of the hair, especially for braids,
and the second clustering for the entire set of meshes. In addition,
a novel strand-growing method is developed to create hair strands
considering the hairstyles.

The second challenge is to recognize hairstyles automatically
and apply appropriate simulation methods with proper parameters,
which, to our knowledge, has not been attempted in computer ani-
mation research. To this end, by analyzing the shapes of the strands
in each cluster, we classify the clusters into one of four hairstyles:
normal, fixed, short, and braided hair. Specifically, we develop a set
of features for the efficient classification of styles. When simulating
a hair model, we apply different properties for each cluster based
on the classification results.

Through simulation experiments we demonstrate that our
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Figure 1: Overview of our system. First, we convert triangle mesh-based hair models into strands which are clustered into those with similar
shapes. Second, we classify the clusters into groups having one of four hairstyles. Finally, we apply style-specific simulation models to each
cluster according to its style.

method enables various hair simulations automatically, such as a
ponytail or braids, without complicated manual intervention and
that it improves the performance by reducing the computational
costs.

2. Related Work

Due to its importance in modeling humans, hair has been re-
searched intensively in the field of computer graphics with regard
to modeling, simulation, and rendering [WBK∗07]. This section
reviews previous work on the modeling and simulating of hair.

2.1. Hair Modeling

To represent a variety of hairstyles effectively, researchers have de-
veloped many hairstyle modeling methods. Each has its own ad-
vantages, but not all of them can be used for simulations. Meshes
or strips are simple and efficient and especially well supported by
existing modeling software, but they are not appropriate for real-
istic simulations [KH00, KN00, LH03]. To reduce the modeling
effort while also creating realistic hair models, vector-field-based
modeling methods have been introduced [Yu01, CK05]. Recently,
3D hair-capture techniques or image-based hair-modeling methods
have been explored [CWW∗13,LLR13,HML∗14,ZCW∗17]. These
methods can create highly realistic digital clones of existing hair
models. The hairstyles that can be reconstructed by existing meth-
ods are mostly limited to unconstrained natural hairstyles, with the
exception of one method [HML∗14], which reconstructs various
braided hair models using predefined braiding patterns. Our method
can reconstruct braided hair models, in contrast to the aforemen-
tioned study [HML∗14], without resorting to predefined patterns
of braids.

Hu et al. [HMLL15] and Chai et al. [CSW∗16] developed a
method that converts mesh-based hair models into strand models.
However, their method is limited to natural hairstyles without con-
straints. A procedural hair generation method developed by Yuksel
et al. [YSK09] enables the generation of more complex styles such
as knots and buns, from manually created hair meshes that provide
clear information on the strand direction. However, hair meshes for
complex styles, that are created by artists and shared through the
Internet, often pose difficulty in estimating strand directions: These
hair meshes may represent even a single hair strand with several

disjoint strips, of which the connections may be elusive and unclear
due to the manual creation process. Overcoming this limitation,
our method is capable of constructing strand models of complex
hairstyles from manually created mesh-based hair models.

2.2. Strand Model

Many methods have been developed for realistic hair animation.
Among them, strand models for modeling individual hair strands
and wisp models for modeling a chunk of hair strands allow for
efficient simulations.

To simulate each hair strand, Rosenblum et al. [RCT91] pro-
posed a mass spring model that represents a strand with a set of
particles connected with springs. Due to its simplicity and com-
putational efficiency, it is commonly used for real-time simula-
tions but is vulnerable to stretching and is weak when used to ex-
press bending and torsion. The latter limitation can be improved
by converting the line segment model into an aggregate tetrahedral
structure by adding more edges between distant particles [SLF08],
thus enabling the expression of bending, twists, and curls. Iben et
al. [IMP∗13] proposed a strand model that can control bending by
adding two types of springs and thus maintain a curly hairstyle. Su-
per helix [BAC∗06] is another strand model derived from an elastic
rod model based on the theories of Cosserat and Kirchhoff. Unlike
a mass spring system, it can deal with the problems of bending,
torsion, and stretching, but the required computation is somewhat
heavy for a real-time simulation.

Articulated rigid-body models have also been used for simulat-
ing hair strands, especially a group of strands or wisps. By means of
reduced-coordinate formulation, the degrees of freedom of a strand
are reduced and the stretching artefacts are eliminated [Had06].
However, this approach complicates collision handling process. To
alleviate this limitation, Choe et al. [CCK05] used a soft constraint
method which involved the insertion of springs between rigid bod-
ies. This method improves the simulation speed and is capable of
controlling torsional motion.

2.3. Real-time Simulation

While hair simulation technique has advanced greatly to the ex-
tent to simulate interaction with other materials [FMB∗17] for of-
fline animation, compromise on quality is still inevitable for real-
time simulation. Because there are in excess of tens of thousands
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Figure 2: Left: valid input mesh example. Right: Invalid input
mesh, in which the direction of the hidden hair part is ambiguous.

of hair strands, it is not possible to simulate all of the strands in
real time. A reasonable method for reducing this level of com-
plexity is initially to simulate only a small number of strands,
called guide strands, and then to calculate the positions of the re-
maining strands by interpolating the guide strands [CJY02]. Chai
et al. [CZZ14, CZZ17] developed a method that optimally selects
guide strands that best preserves the fully-simulated hair motion.
Other methods of real-time simulation include GPU acceleration
[HH12, MKC12] and the example-based learning of hair move-
ment behavior [GSRH12, HBLB17]. In contrast to the previous ef-
forts, we take a different approach and apply a different simulation
method depending on the hairstyle to improve the simulation speed.

3. Overview

Figure 1 shows an overview of our framework. Our input hair mod-
els are triangle meshes, and we initially convert them into strand-
based hair models, with the strands clustered depending on their
shapes (Section 4). We then examine each cluster and classify each
into one of the four aforementioned hairstyles (Section 5.1). Lastly,
we apply different simulation models to each cluster according to
its style (Section 5.3).

Input mesh Even for identical hairstyles, the actual mesh models
for the style differ significantly according to the artists. The varia-
tion usually becomes wider for complex hairstyles, such as braided
hair. Our method assumes that the input mesh satisfies the follow-
ing: First, the vertex indices in a hair mesh are set in increasing or-
der from the proximal to the distal end of the hair. This eases iden-
tifying the direction of the extracted strands. Second, the hair mesh
must be detailed enough so that the direction of hidden strands can
be reasonably estimated from the mesh. Figure 2 shows an exam-
ple of valid and invalid input meshes. The braided hair model (left)
allows the estimation of the hidden hair parts because the mesh
patches are arranged such that if one grows the strands from one
patch, it is likely to meet the proper subsequent patch. In contrast,
the omission of the large part of hair in Fig. 2 (right) makes such
estimation extremely difficult, and thus it is considered an invalid
input.

4. Strand Hair Generation

In order to create various hair models, Hu et al. [HMLL15] took a
clever approach that collected hair mesh models from online repos-
itories and converted them into strand models. To this end, they ini-
tially extracted strands from the edges of triangle meshes (dubbed
input strands in our paper) and built a 3D orientation field that in-
dicates the hair direction on a particular grid. Hair strands are then
grown from the scalp using the orientation field. This method works
well for uniform hairstyles but may fail to produce appropriate
strands for complex hairstyles in which the meshes are overlapped
and proceed in different directions or in cases where some parts of
a strand are omitted. Because we deal with various hairstyles, such
complexities arise often. Therefore, we developed a novel method
to overcome the problems.

First, we collect hair models from online repositories and ex-
tract input strands from the meshes, as originally proposed by Hu
et al. [HMLL15]. Subsequently, for disconnected input strands, we
estimate the connections among the strands via the following three
steps. (i) Grouping the input strands with those from the same
mesh. (ii) Type identification of the groups to identify the root,
middle, and tip parts (Section 4.1). (iii) Applying two-level spectral
clustering with the groups to gather groups to be connected into the
same cluster (Section 4.2). With the estimated connection informa-
tion from the clustering step, we grow a strand using the vectors
of the input strand and the 3D orientation field (Section 4.4). Our
method has two advantages. It can generate hair strands even when
the base hair models contain overlapped or disconnected meshes.
Second, by means of spectral clustering, it can generate strands of
complex hair models such as braided hair and ponytails.

4.1. Strand Type Identification

Given the input strands from meshes, we initially group the strands
with those from the same mesh patch to simplify and reduce the
number of nodes for clustering.

Subsequently, we employ spectral clustering [NJW01], which is
widely used for image segmentation, as a basic tool for the clus-
tering of the input strands. However, a naive application of spectral
clustering for the entire set of strand groups did not perform well,
especially for complex styles such as braids, as the intertwined pat-
tern of strand streams makes it extremely difficult to separate them
out when they are compared on par with other parts of hair.

Our strategy to confront this challenge is to develop two-level
spectral clustering, in which the middle region in the hair is clus-
tered first to resolve the clustering of intertwined hair groups, with
this followed by the overall clustering step. This strategy necessi-
tates the identification of the middle part of the hair. Thus, for each
strand group, at the outset we identify the group type as the root,
tip, or middle type according to its distance from the scalp.

The type of each strand group gi is determined as follows:

Type(gi) =


root, if |R(gi)|= 0
tip, else if |T (gi)|= 0
middle, else,

where R(gi) and T (gi) denote other groups located close to the
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Figure 3: To calculate the edge weights between two groups, we
create center strands and compare the two center strands.

beginning and end of group gi, respectively. The root and tip types
indicate that there is no preceding group and no subsequent group.
The middle type is neither a root nor a tip (Algorithm 1).

For the root-type group, we further distinguish it into two sub-
groups. These are a connected-root-type group that is connected
with either middle- or tip-type groups, and a free-root-type group
that stands alone. The degree of connectedness of a root-type group
with a nearby group is determined by the flow directions of the two
groups: If the direction of the distal end of a root-type group is
similar to that of the proximal end of a nearby group, it is iden-
tified as a connected-root-type group. The threshold of similarity
is determined by the distribution of the angles, i.e., the direction
differences, of all pairs of root groups and nearby groups.

Algorithm 1 Strand Type Identification
for each strand group i do

Find other groups located close to the beginning and end of i
for each strand group i do

if there is no group close to the beginning of i then
if there is no connectable group close to the end of i then

Type(gi) = root-free
else

Type(gi) = root-connected
else if there is no group close to the end of i then

Type(gi) = tip
else

Type(gi) = middle

4.2. Middle Group Clustering

After the type identification of each strand group, we apply spectral
clustering over the middle-type groups to connect the input strands
naturally and to gather similar strands into the same cluster. For
spectral clustering, we build a graph in which each node indicates
a middle-type group and each edge is weighted by the appropriate-
ness of the connection between two groups. We calculate the edge

Figure 4: The range of valid coefficients are shown in the shaded
triangle.

weights with the following assumption: Two groups will be con-
nected (i) if they are close at the connection parts, and (ii) if their
tangential directions at the connection part are similar.

Before calculating the edge weights between gi and g j, we ini-
tially create center strands ci = (ci

1, ...,c
i
Mi), c j = (c j

1, ...,c
j
M j ) by

calculating the average of the input strand for each group and then
use the center strands instead of the input strands to simplify the
examination. By comparing the distances from the first particle of
one group to the last particle of another group, we determine the
order of two groups and refer to the group located near the root
side as cr and the group located near the tip side as ct . Next, we
calculate the following three values (see Figure 3):

f1 = min
Mr
2 ≤m≤Mr ,1≤n≤ Mt

2

||p(cr
m)−p(ct

n)||
H

(1)

f2 =
|vrt ·vtt |
||vtt ||2

(2)

f3 =
angle(vr

f ,M , vt
1, f )

π
(3)

where vrt = p(cr
M)− p(ct

1), vtt = p(ct
M)− p(ct

1), with p(cp
m) in-

dicating the position of particle cp
m. The head height H serves as a

normalization term. The vector vi
m,n indicates the vector from parti-

cle ci
m to ci

n, and ci
f is the farthest particle from an edge connecting

ci
1 and ci

M . Even if two groups are close, they should not be con-
nected if the groups overlap greatly. Therefore, we check the dis-
tance using (1), and the overlap ratio using (2). Equations (1) and
(2) are used for assumption (i), and (3) is for assumption (ii).

The edge weights wi j are determined as a weighted sum of fi val-
ues using coefficient ki. In our experiment, we used the following
formula

wi j =

{
k1 f1 + k2 f2 + k3 f3 if f1 < H

4 , f2 < 0.5, f3 < 0.3
∞ otherwise,

where ∑i ki = 1 and the bounds for fi define the valid region of each
criterion. In addition, we found that adding a heuristic emphasizing
the local similarity improves the clustering quality by scaling the
weight wi j to half between gi and g j if wi j is the minimum among
the values of wik where gk denotes the tip side groups of gi. Figure
4 shows the approximate range of the coefficients ki for the edge
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Figure 5: Top: Strand groups. Bottom: Results after middle group
clustering.

weights that succeeded in clustering for the example shown in Fig-
ure 5 (middle).

Figure 5 shows the clustering results of the middle groups. We
set the desired number of clusters for each hair model for spectral
clustering. Each cluster obtained in this stage is regarded as a single
node in the next stage.

Algorithm 2 Clustering
if Middle groups exist then

for each middle type group i do
for each middle type group j do

Calculate the connectivity edge weights
Do spectral clustering for middle groups

for each strand group i do
for each strand group j do

if Both groups are root type then
Calculate the similarity edge weight

else
Calculate the connectivity edge weight

Do spectral clustering

4.3. Hair Clustering

This stage performs clustering over every strand group of the root
and tip types and every cluster of the middle type. We divide groups
and clusters into two sets, S1 and S2, and apply different schemes
for determining edge weights. Free-root groups belong to S1 and all
other groups belong to S2. Edge weights between groups in S1 are
based on the similarity with respect to the distance and direction
between two groups, defined as follows:

||p(ci
1)−p(c j

1)|| (4)

||p(ci
M)−p(c j

M)|| (5)

Figure 6: Left: Middle group clustering result. Right: Hair clus-
tering result.

Edge weights between elements in S2 are based on the connectiv-
ity of the two elements, by using (1), (2), and (3). Edge weights
between the S1 and S2 groups are set to infinity. Algorithm 2 sum-
marizes the two-level clustering method. Figure 6 shows the case
how the strands in a braided hair style are clustered through the
middle group clustering and final clustering.

After clustering, we divide clusters at positions that change from
the root type to another type as the proximal and distal parts of the
positions may have different styles.

4.4. Hair Growing

With input strands and their cluster information, we grow hair
strands starting from the scalp. For this, we use two types of grow-
ing strategies. One is to grow the strands using the orientation fields
constructed by the input strands as has been done in [CSW∗16].
This method effectively grows strands even when the input strands
are sparse because the orientation field interpolates the strand di-
rections into the region where input strands do not exist. In contrast
to [CSW∗16] that constructs only one orientation field, we build
separate field per cluster. This prevents that hair directions are av-
eraged out in the region two different clusters meet. We also found
that the orientation field-based method is not very effective for the
middle and tip-type groups as it has a tendency to extrapolate the
hair directions outside where a cluster is non-existent. Therefore,
for these types of input strands, we grow the strands in the direction
of the closest input strand. When the strand reaches the end of the
input strand, a search is attempted to find a new input strand from
the same cluster and then from other clusters. Figure 7 shows the
process of creating a strand-based hair model from a mesh-based
hair model.

5. Style-Specific Hair Simulation

With strand based hair models where the strands are clustered and
gathered depending on the degree of similarity, we apply style-
specific simulation methods to each cluster. For this, each cluster
is first classified into one of four hairstyles: normal, fixed, short,
and braided. A cluster of hair that should be static with respect
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Figure 7: (A) A mesh-based hair model. (B) Extracted input
strands. (C) Clustering of the input strands. (D) Grown strands.

to the head is classified as the fixed style. The short style is as-
signed to short hair clusters that should exhibit stiffer deformation
behavior than normal hair. Braided parts of hair are identified as the
braided style, and these are simulated with a wisp model. A cluster
that does not belong to any of these three styles is classified as the
normal style. Normal and short hairstyles are simulated with the
mass-spring model.

5.1. Classification

We train a support vector machine and the random forest method to
classify hairstyles. To obtain accurate classifiers, we develop a set
of features for each style as explained below.

First, two features are used to determine a short hairstyle: the av-
erage length and the maximum length of all hair strands in a cluster.

Second, a cluster is determined as a fixed hairstyle if 1) the start-
ing particles of the cluster are root particles, 2) the strands gather
at the end, and 3) all parts of the strands are close to the scalp. To
examine these conditions, we initially designate the center strand c
as the average of strands s = (s1, ...,sS) in the cluster where S is the
number of strands, and then compute the following two features.
The first measures the second condition by comparing the average
distance between a strand and the center strand at the terminal po-
sition (indexed as M) and at its maximum position (Fig. 8).

dM

max j d j
where d j =

1
S∑

i
||p(si

j)−p(c j)||. (6)

This feature value becomes smaller as the strands gather more at the
end. The second feature is the distance from the farthest particle to
the scalp.

Third, the classification of the braided hairstyle is performed
against clusters of middle type groups. We check whether the clus-
ter consists of more than one node (i.e., a cluster after middle-group
clustering) and whether they are braided. To examine this, the cen-
ter strand ci of each node and the center strand ctotal of all nodes
are then computed, after which the distances from the ci to ctotal

are measured. The feature value for this is

max
i, j
||p(ci

j)−p(ctotal
j )|| (7)

Training From a total of 159 clusters from 46 hair models, we
collect a dataset of the above features and train classifiers, one with
the support vector machine with the pearson VII function-based

Figure 8: Left: We determine whether strands are gathered by cal-
culating distances between the center strand and the other strands.
The center strand is colored red. Right: To determine whether
strands are twisted around the center strand, we calculate distance
between the center strands of each stream and the center strand of
all streams. The former is colored blue and the latter is colored red.

universal kernel [B06] and the other with a random forest algorithm
with 100 trees. With ten-fold cross validation, the accuracy levels
of the trained classifiers are 84.8% and 86.7%, respectively. The
training data that we used for our experiment can be downloaded
from https://github.com/data1087/HairData/blob/master/ConvertedObj.zip

5.2. Simulation

For the simulation, we use the altitude mass-spring model proposed
by Selle et al. [SLF08]. To overcome the limitation of the conven-
tional mass-spring model, which cannot control bending and tor-
sion, the altitude mass-spring model constructs tetrahedral struc-
tures using additional particles and edges. Hair-body collisions are
handled based on the method proposed by Bridson et al. [BMF03],
which uses a signed distance field (SDF). Specifically, distance of
each particle to the near-body surface is calculated using the SDF,
and in the event of a collision with the body, it is repositioned to-
ward the closest surface of the body. Hair-hair interactions are han-
dled by the method of Muller et al. [MKC12], which uses a density
field that applies repulsive force to each particle to a lower den-
sity direction. For a rapid simulation, we simulate only a subset
of strands, referred to as guide strands, and the deformation of the
remaining strands is achieved by interpolating the guide strands.

Depending on the classification results, we apply certain proper-
ties to each cluster. Fixed hair clusters are excluded from the sim-
ulation because they are fixed to the head. Short hair clusters are
simulated with the method used for normal hair clusters, but with
fewer particles per length than normal hair in order to make the re-
sult stiffer than normal hair so as to maintain the original hair style.

For a braided hair cluster, we use the wisp model in which only
a center strand is physically simulated and the shapes of actual
strands are determined kinematically from the center strand. To do
this, in the default pose, each particle’s relative position with re-
spect to a coordinate frame defined on the closest tetrahedron of
a center strand is stored, and its global position is updated as if
the particle is fixed to the reference coordinate frame of the tetra-
hedron, which is dynamically simulated. The center strand is con-
nected to preceding strands by adding edges between the start of
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Figure 9: Input meshes (left), clustered strands (middle), Classification results (right). Classified strands are colored as follows. Brown:
fixed hair. Blue: braided hair. Green: short hair. Yellow: normal hair. In the case of braided hairs (top row), middle group clustering results
are shown next to the input meshes.

the center strand and the end of the preceding strands, and the mass
of each particle is scaled according to the number of preceding
strands.

Interpolation The shapes of the interpolated strands are updated
by interpolating the guide strands. To accomplish this, we use both
barycentric interpolation, which constructs each interpolated strand
using three nearby guide strands, and clump interpolation, where
an interpolated strand follows only one guide strand. Barycentric
interpolation is used when the three nearby strands belong to the
same cluster and when their directions are similar. Otherwise, the
clump interpolation method is used.

6. Experiments

This section shows the results of our strand reconstruction method
and the performance of our hairstyle classifiers. Our method can
convert various styles of hair mesh models into strand models and
then perform a dynamic simulation. Figure 9 shows the input mesh,
its strand reconstruction, and the classification results.

6.1. Classification Performance

Our classification features are selected somewhat heuristically to
reflect the characteristics of each hairstyle. To examine the effec-
tiveness of the features, we compare them with other features that
use basic geometric and statistical information computed from the
input hair model, specifically the mean and variance of the posi-
tions of the strand particles, the number of strands, the mean and
variance of the distances from each particle to the skin, the mean
and variance of the distances from each particle to the average
strand, the mean of edge vectors, the mean of the direction dif-
ferences between adjacent edges, and the position of the average
strand, all of which constitute 190-dimensional vectors. To unify
the dimension of the feature vectors, particles of each strand are
resampled to obtain N−1 particles from N equidistant intervals.

We trained a support vector machine and a random forest classi-
fier with these raw features against the same hair database, and ob-
tained 79.2% accuracy for the support vector machine and 72.4%
accuracy for the random forest. The classification result using the
original features shows at least 5% greater accuracy than the raw

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

361



Seunghwan Jung& Sung-Hee Lee / Hair Modeling and Simulation by Style

Figure 10: Left: Hair meshes. Middle: Ideal classification that
identifies fixed hair parts (brown) due to hair bands. Right: Classi-
fication failure cases. All hairs are classified as the normal type.

features, which suggests that our features have reasonably good
discriminative power.

Failure cases Sometimes our classification method results in sub-
optimal results. Most of the failures occur in the normal and fixed
types. Figure 10 shows the cases that our method did not correctly
classify the styles. The end of strands in Fig. 10 (top) are not gath-
ered close enough, and some strands in Fig. 10 (bottom) are located
too far from the scalp to be classified as the fixed type. As a result,
they were classified as the normal type.

6.2. Simulation Performance

Figure 11 shows that our method generates reasonable hair simu-
lation for a number of styles. Each hair model consists of approx-
imately 10k strands, including 169 guide strands. The supplemen-
tary video shows the quality of modeling and simulation. As can
be seen in the video, in the example of Fig. 11 (bottom left), the
strands spread somewhat excessively at the junction of the fixed
and normal styles. This particular model was challenging because
there was a large gap between the fixed hair part and the pony-
tail part and between the two parts existed a hair band. When hair
strands were grown, they followed the orientation field of the fixed
hair part and then the direction of the input strands of the pony-
tail part. During the transition, the strands spread to some degree
because of the large gap.

We tested simulation with a computer with an Intel I7 950 pro-
cessor, 4GB of memory, and an NVidia GeForce GTS 450 graphics
card. The simulation required 20-30 ms per frame, with 15-20 ms
for the guide strand simulation and 5-10 ms for interpolation. We
made use of multi-threaded parallel computing, without GPU ac-
celeration for the simulation. We used an offline hair rendering tool
of Blender for creating the animation shown in Fig. 11.

7. Discussion and Future Work

This paper presented modeling and simulation methods for realiz-
ing hair simulations depending on the hairstyle. Starting with a hair
mesh model, we reconstructed a strand hair model by finding the
degree of connectivity information among mesh patches through
spectral clustering and by growing strands while preserving the
style of the clusters. The style of each hair cluster is then classi-
fied and appropriate simulation methods with proper parameters
are identified. Our hair simulation shows realistic hair movement
performed at interactive computational speed.

There are a number of limitations in our method that can be im-
proved by further research. First, more hairstyles need be included
in our framework. The four styles considered here are the most
common styles, yet the set is not complete. Including other styles
such as natural African hair or even a bun remains as interesting
future work. This extension of the number of styles will naturally
necessitate a further improvement of the hair classification and sim-
ulation methods.

Second, the simulation method for each style can be improved.
We modeled a braid with a wisp model, but the true deformation
characteristics of braids are more complex, with irregular and non-
isotropic material properties which depend on how the strands are
braided. Modeling more accurate physical properties will allow for
more realistic hair simulations. The hair interpolation method for
the normal style based on barycentric interpolation has a limitation
when used to generate natural-looking hair. Therefore this can be
improved as well.
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