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Abstract 

Designing dancers’ paths in choreography, or a floor pattern, is one of the most highly creative tasks 

of choreographers. Aiming to assist this task, this paper presents a novel system that automatically 

generates a number of floor patterns for multiple dancers given a choreographer’s high-level feature 

inputs. The proposed floor pattern model represents locomotor movements of dancers on stage. 

Through a dance literature survey, four major features, i.e., time, space, symmetry, and entropy, were 

selected as feature inputs and mathematically modeled. Our system uses a multi-objective genetic 

algorithm to achieve desired floor patterns given input features. It iterates from random floor patterns 

to the ones that satisfy users’ preferences while exploring the space of floor pattern with selection, 

mutation, crossover methods that are developed to fit the genotype of our system. User tests confirmed 

that our system generates a wide range of floor patterns according to user-specified input conditions. In 

addition, an actual dance piece was choreographed with the proposed method, which validated the 

usefulness of the proposed system. The proposed system is the first that automatically generates floor 

patterns for multiple dancers. 
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1 Introduction 
Dance is an art of human body and motions.  A flourishing combination of postures and body gestures 

builds up an artistic experience for an audience. Various movements have been created to express 

mythical stories, symbolic figures, and emotions. Knowledge of physics and anatomy has expanded 

dance’s boundaries. 

In dance, the locomotor movements of dancers are an important element that makes dance more 

dramatic and sophisticated. In a dance piece, dancers unceasingly move around on stage as a part of 

choreographed dancing motions or for changing locations. The moving paths can have various forms. 

Multiple dancers may move as a group or get divided to several groups or to individuals. The dancers 

move fast or slow, straight or round. Their movements may be ordered or chaotic. Dancing is an 

exploration between stability and instability, as well as between balance and chaos. The relations or 

interactions among dancers make the paths more complicated. These varieties of floor patterns created 

by the locomotor movements are closely related to the theme, story, context, or mood of the scene, 

music, and other elements of a dance piece. Therefore, the design of the choreographic path, or floor 

pattern, is a complicated problem that requires consideration of many aspects.  

Traditionally, the creation of choreography has relied only on the choreographers’ knowledge and 

experience. It typically requires a huge time and effort to get inspiration and refine the design. 

Moreover, to achieve an actually implementable floor plan from an initial idea, dancers need to test and 

evaluate the plan repeatedly, which may be exhausting. While such a process is still prevalent in the 

field of dancing, some artists in dance, such as Merce Cunningham, have explored new methods to 

acquire new ideas. They have brought improvisation and external aleatory elements as alternative tools. 

Recently, researchers have been experimenting with computational approaches to stimulate the 

creativity of choreographers by digitizing, archiving, analyzing, synthesizing, and displaying dances 

for educational or creative goals [1–4]. Our research shares the same philosophy as them.  

Our research aims to build a computational system that assists the creative process of designing a 

dance floor plan. Given several target features of the floor pattern by a choreographer as inputs, our 

system generates numerous patterns that satisfy the conditions. From an engineering perspective, 

choreography is an exploration of the high-dimensional space of human movements to find novel 

solutions. As choreography is about artistic and creative inspiration, it tends to have multiple objectives 

and encourages diverse solutions. For these reasons, we selected a multi-objective genetic algorithm as 

the main frame of our system. The artistic background for the system came from studies of 

choreography theory. From countless elements to consider for choreography, we chose a small number 

of important features as a foundation of our work. For example, Rudolf von Laban’s theory of effort [5] 

and symmetry played a major role in our work. Selected features were quantitatively modeled to 

evaluate candidate floor patterns. With this setup, our system based on the evolutionary algorithm 

explores the space of floor patterns by randomly generating sample floor patterns, and gradually 

generates solutions that satisfy the choreographer’s desires. We performed a user test to evaluate our 
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system, and the results show that there is a significant positive correlation between the intended input 

features given by a choreographer and the perceived features by users. 

Contributions. In previous decades, many artists have experimented with collaboration of dance and 

other media on stage. However, it is only relatively recent that they started to change dance more 

fundamentally with computational means, as will be discussed in the next section. To the best of our 

knowledge, our system is the first that automatically generates floor patterns for multiple dancers, and 

this is in contrast with existing exploratory work that focused mostly on the motion of individual 

dancers. In terms of practicality, our system can be used for dancers and choreographers in the field. 

Regarding technical contributions, we show that a genetic algorithm-based framework can generate 

plausible floor patterns for dancers. This is enabled by our novel methods to quantitatively apply 

choreography theories of Laban and others to non-human shape structure.  

The rest of this paper is organized as follows: In Section 2, we review some academic studies related 

to our work. The contextual background of our topic and technical methodology that we used are also 

introduced. Details of our system are described in Section 3. The user scenario, structure of our system, 

floor pattern model, and feature models to evaluate floor patterns are also detailed in this section. The 

user evaluation of the system and its results are reported in Section 4 and Section 5 concludes the paper. 

2 Related work 

 Efforts for artistic creativity 

In the long history of art, acquiring new ideas for creation or inspiration has always been important to 

artists. Choreographers also have searched for their own source or methodology for the inspiration. The 

movements in dancing should be driven by reasons or motivation. Music has been the most basic 

element that leads dancers rhythmically and emotionally. Literature has also been another popular 

source to motivate dancers. Physical objects like a ball contributes in narrowing down possibilities of 

progress in movement.a 

More lately, improvisation has become one of the most popular techniques for contemporary 

choreographers. Without a predetermined choreography, dancers or choreographers decide the next 

moves instantly and intuitively [6]. Some abstract clues, such as music, situation, language, and 

physical items are used to help. As this decision process, one can reach motion space beyond conscious 

boundaries. The improvisation technique lets the dancer and choreographer explore infinite 

possibilities in the space of dancing. 

Historic choreographer Merce Cunningham and musician John Cage once used I Ching, the Chinese 

book of changes, or Hexagram, to form their own choreography and music for it. This kind of aleatory 

technique enables artists to adopt inspiration from the outside world [7, 8]. 

                                                        

 
a  Akiko Takeshita, YCAM InterLab,  Kyoto Experiment Talk, 2017. 
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These improvisation and aleatory methods have characteristics of a stochastic process, which notably 

has a lot in common with the solution seeking process of evolutionary algorithms. 

 

 Computational motion design 

More sophisticated approaches to choreograph with computational means have been found in the last 

decade. Gentry et al. [3, 9] noticed that  swing dance steps are well standardized and can be coded with 

a small number of movement vocabularies. By taking advantage of these characteristics, they modeled 

the entire swing dance as a finite state machine with the movement vocabularies as the states and 

automatically generated dance sequences.  

Similarly, LaViers et al. [2, 10] noticed that the basic leg postures of ballet are highly standardized. 

They sampled ten leg postures from basic ballet and developed a system that generates ballet sequences 

by transitioning between the sample postures. Lee et al. [11] investigated the musical aspects of dance. 

Their work generated choreography by adjoining short motion segments based on the correlation 

between music and motion segments.  Pathfinderb is another example of a generative system that 

provides dancers with other possibilities of motions by showing abstract animated geometrical figures 

that constantly deform. In this way, there have been various computational approaches of choreography, 

which are mainly derived from the robotics or motion synthesis fields for computer graphics. 

Laban’s motion analysis (LMA) theory is frequently used in this context. Rudolf von Laban, the 

pioneer of dance motion analysis, introduced effort theory, which defines four dimensions, namely, 

time, space, weight and flow, to describe the fundamental dynamic characteristics of movement [5]. 

His work enabled dancers to think of body movement more objectively and scientifically. While it was 

basically a tool for dance education, creation, and research, it expanded its application to sports, 

general movements, and robotics as well. Yet, these are descriptive, conceptual dimensions, and thus 

many researchers have proposed mathematical formulations for their own purposes [12–14]. In this 

paper, we applied LMA theory to identifying features to evaluate generated floor patterns. 

 Beyond aleatorism – Evolutionary art 

Genetic algorithms have made flourishing contributions in various areas to solve complicated high 

dimensional problems [15]. While mostly used for practical engineering problems, the genetic 

algorithms have also been used for artistic purposes [16–18]. Besides the ability to find optimal 

solutions, their stochastic nature is a very appealing feature to come up with novel ideas [19]. Artistic 

decision-making tends to have multiple heterogeneous goals and thus requires a multi-objective 

approach. Pareto optimality [20], which we used in our work, is one of the most popular methods for 

this multi-objective problem.  

For choreography, Carlson et al. [1] used genetic algorithms for contemporary choreography. Their 

concept of movement catalyst aims to encourage choreographers to distance themselves from their 

comfort zone of choreographic habits and to explore novel movements. Likewise, Lapointe and 
                                                        

 
b http://princemio.net/portfolio/pathfinder/ 
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Époque [4] introduced an interactive genetic algorithm with motion capture for computer-aided 

choreography. We also apply genetic algorithms to choreography. However, unlike other work [3, 17] 

that focused on the motion of an individual dancer, our main interest is generating paths of multiple 

dancers, which is another crucial element of choreography. To this end, we developed a floor plan 

model and a set of fitness functions that evaluate certain high-level characteristics of paths for multiple 

dancers.  

Crowd simulation research in computer graphics field has developed a number of methods to model 

crowd configurations, which can benefit choreography of multiple dancers. Kwon et al. [21] and Henry 

et al. [22] treated crowds as a mesh structure, where they converted 2D paths of multiple agents to a 3D 

mesh by connecting agent positions at the same time with edges. We adopt this idea to represent 

dancers’ positions in our research. Johansson and Helbing [23] introduced pedestrian simulation with a 

genetic algorithm for the indoor architectural design. 

3 Proposed System 

 Overview 

The overall structure of our system is shown in Fig. 1. Firstly, a choreographer would have a feature 

preference about what he/she wants to create. Through a survey on choreography theory, we collected 

numerous elements that are related to choreography and selected 4 fundamental features: time, space, 

symmetry, and orderliness. Time and space were brought from Laban’s effort theory [5], which is one 

of the most recognized theories of motion analysis. Also, authoritative choreographers, like Doris 

Humphrey, stress symmetry and orderliness [6, 24]. As these features are descriptive, mathematical 

models to quantify each of them were developed. Based on these models, floor patterns can be 

evaluated and compared to the user’s input preferences quantitatively. Meanwhile, our floor pattern 

model was designed to express the locomotor movement behaviors of dancers and be used as a 

genotype of our genetic algorithm. This is constrained by conditions such as the size of the stage and 

musical structure (i.e. tempo and metre). With this floor pattern model and feature models, our system 

runs a multi-objective genetic algorithm. One floor pattern is a sample solution of our genetic 

algorithm. It iterates from random initial floor patterns to the ones that satisfies the user’s preference. 

 

 
Fig. 1 Overview of our floor pattern auto-generation system 
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 Floor pattern model 

We developed our floor pattern model to express the behaviors of dancers, and it consists of a number 

of elements, which are described in detail here.   

 The first element is the stage. The width and depth of the stage constrain the boundary of dancers’ 

locomotor movements. We set them as the initial input parameters of the system.  

Music is also an important element of choreography. The style and structure of music are strongly 

coupled with the movements of dancers [25]. The relation between music and dance movements is 

quite delicate. A faster tempo encourages dancers to move faster. Musicians often regard proper tempo 

for dancing as too slow and boring, and may think the performance gets better with varying tempos 

while dancers prefer a constant tempo [25]. Also, number of beats per measure, or metre, considerably 

changes the condition. Quadruple and triple metres demand a different combination of motions, which 

evoke different emotions. Instability and sensitivity of odd number of beats per segment is typical 

characteristic of triple metre compared to the quadruple metres. To reflect these basic musical features, 

we set tempo and metre as initial conditions of our system. The number of dancers is also set as an 

initial condition.  

For the expression of dancers’ behavior on the stage we surveyed dance notation systems. Laban’s 

dance notation system, or Labanotation, is a well-known example. Labanotation is another 

representative work of Laban for expressing dancer’s full-body motions scientifically. In Labanotation, 

floor pattern of dancers is basically visualized with pins and arrows on top view floor plan. Pins 

indicate dancers. Shape of pins differentiate type of dancers (e.g. gender and age). Arrow indicates path 

from a starting point to the end. The arrow(path) might be straight or curved. Coordination is musical 

score was also designed and encouraged. Relationship between dancers is noted with the shape of pins 

[26]. Many choreographers tend to draw their designed floor plan is a somewhat similar manner to 

Labanotation. 

We modeled 4 types of locomotor movement behaviors of dancers from the examples of the 

Labanotation: translation, rotation, staying, and mirroring. Translation is the most basic element for 

linear displacement from one position to another. Rotation was added to reflect curved motion around a 

certain position. The destination positions of rotation and staying are decided relatively with their 

departing positions. As non-moving is as important as moving in choreography, we added staying 

behavior explicitly. A relationship is a keyword that stands out in dance compared to other art genres. 

Confronting, cooperating or other kind of relationships between dancers create various situations on 

stage. For this reason, one noticeable characteristic of the project Motion Bankc is archiving the 

relationship between dancers on stage.  To reflect one of such relational aspects, we added a mirroring 

key that allows for a dancer to move with respect to another dancer. Mirroring key refers to a reference 

dancer and copies his/her displacement path (i.e., path relative to the departing position) in a certain 

time duration. It can be copied as it is, or be flipped horizontally or vertically (Fig. 2). 

                                                        

 
c http://www.motionbank.org 
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A path generated by the above locomotor movement behaviors are represented by a sequence of key 

values at key frames. The key values for the four behaviors specify parameters for the behavior, as 

defined as follows:  

l Translation: end time, destination coordinates 

l Rotation: time, center of rotation, rotation angle 

l Staying: time 

l Mirroring: time, target dancer, mirroring style (copy, vertical flip, or horizontal flip)  

The sequence of these motion keys define a timeline for each dancer about when and how they 

behave. 

Locomotion of dancers in choreography is rather planned than pedestrian in usual situations. For this 

reason, a path in choreography shows longer geometric strokes than that of general walking motions. 

Therefore, we set the length of one musical measure as time intervals between the key frames of a 

dancer’s path. It is different from common representation of locomotion used in computer animation 

(e.g. array of irregular coordinates per tens of milliseconds). 

Overall, our floor pattern model can be represented with a two-dimensional matrix (Fig. 3), where 

each row and column denotes the identity of a dancer and the key frame, respectively. Each element in 

the matrix specifies the key values of one of the four behaviors as visualized in different colors. 
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Fig. 2 Four types of motion keysd 

 

 
Fig. 3 Visualization of our floor pattern and its genotype in form of time line (Triangles indicate dancers) 

 Features for solution evaluation  

(To reviewers: please refer to video clips that contains some samples.) 

After surveying studies on choreography theory, we determined features to evaluate floor patterns. 

We started with the four features of Laban’s motion analysis theory: time, space, weight, and flow. 

Weight and flow are rather abstract and composite features to express how the motions look. Weight 

element classifies movements with strong and light. Likewise, flow element has two elements: bound 

and free movement. As they are abstract and composite, further study is required to apply them to floor 

plans. In our work, we adopted only time and space elements. Symmetry is another key aspect of 

choreography. Doris Humphrey, dancer and choreographer of early contemporary dance, proposed 

symmetry as the first constant for the design of dance [24]. Lastly, we measured the entropy of a floor 

plan to evaluate the group-wise behavior of dancers. Each feature is explained next. 

 

3.3.1 Time (Speed) 

As aforementioned, time is one of four parts of Laban’s theory and has two elements: sudden and 

sustained. With respect to floor pattern design, time can be related to the speed of locomotion. The 

audience feels more dynamics with a faster motion. To evaluate this aspect, we select the average 

speed 𝑣"#$% of dancers as the first kinetic feature element and define a cost function to minimize its 

difference from the desired average speed. Fig. 4 shows examples of two floor patterns obtained with 

low and high desired average speeds, respectively.  

 

𝑐𝑜𝑠𝑡*+"# = -𝑣"#$% − 𝑣"#$%,01$2- 

                                                        

 
d Figure contains images created by Vladimir Belochkin and Mourad Mokrane from the Noun Project. 
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Fig. 4 Top view of generated floor patterns with different desired average speed (0.23m/s for the left, 

1.10m/s for the right. Other features were controlled to be nearly equal.) Colored triangles and strokes 

indicate the current position and paths of dancers 

 

3.3.2 Space (Direct or curved) 

Another element of Laban’s effort theory is space, which divides movements into direct or indirect, 

straight or curved [5]. Blom and Chaplin [6] commented that “curved design and straight-and-angular 

design show a marked and distinctive contrast in their dramatic implications”. Straight or rounded line 

movements evoke different impressions such as aggressiveness and elegance. LaViers and Egerstedt 

[12], who used Laban’s effort theory to synthesize the robot’s motion with style, implemented their 

own method to quantify this quality. They modeled the space dimension as the distance between the 

linear interpolation of two adjacent key frames and an actual path. However, this method may 

recognize a sharp zigzag path as a curved one. Instead, we computed the average of the curvatures for 

every three consecutive frames in each path to measure the space quality. The curvature was estimated 

with Menger curvature. 

𝑐"#$% =
∑ ∑ 𝑐4𝑝+,*67	, 𝑝+,* 	, 𝑝+,*97:;

*
<
+

𝑁 × 	𝑇 	

𝑐𝑜𝑠𝑡@A$B# = -𝑐"#$% − 𝑐"#$%,01$2- 

where 𝑐 denotes Menger curvature computed from three consecutive positions 𝑝+,* 	of a dancer 𝑖 at 

time frame 𝑡. The variables 𝑁 and 𝑇 denote the number of dancers and the total number of time frames, 

respectively. Fig. 5 shows examples of two floor patterns with the desired value of space element set 

for straight and curved paths, respectively. 
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Fig. 5 Top view of generated floor patterns with different desired space values (0 for the left, 0.328 for the 

right. Other features were controlled to be nearly equal)  

3.3.3 Symmetry 

In general, symmetry suggests stability, balance, and security [6, 24]. However, in the world of 

aesthetics, the virtue of symmetry sometimes is regarded as a weak point because art is for stimulation, 

excitement, and adventure rather than comfort. Asymmetry stimulates those senses. The 

unpredictability of contests and imbalance is a typical impression of asymmetry for the audience. Thus, 

a proper balance between symmetry and asymmetry is needed by choreographers [6, 24]. Humphrey 

[24] stated that the design of dance is handling a complicated structure with two aspects (space and 

time), and there is symmetry in time as well as symmetry in space [6]. 

For measuring symmetry of dancers’ movement, we adopt the method of Mitra et al. [27] which 

identifies symmetric geometries from an image or 3D geometry. To measure symmetry, [27] utilized 

the iterative closest point (ICP) method, a common method for finding the best-fitting transformation 

of images [28, 29]. ICP works by minimizing the distance between a transformed point cloud and an 

original one, and the distance, or ICP residual, can be a measure for symmetry [27]. 

Basic principle of the ICP method is as follows [30]. Let us assume two point clouds 𝑃 =

{𝑝7, 𝑝F,⋯ , 𝑝%} and 𝑄 = {𝑞7, 𝑞F,⋯ , 𝑞"}, and 𝑄 is transformed by a transformation a. First step is to 

identify a nearest point 𝛼4𝑞L: among 𝑗 = 1…𝑚	to each point 𝑝+. Then, sum of the squared distance 

between the pairs e(a) is called ICP residual error 

𝜀(𝛼, 𝑃,𝑄) = 	T𝑑4𝑝+	, 𝛼4𝑞L::
%

+V7

	

where 𝑑(⋅,⋅) denotes a distance between two points. In our experiment, we use the Euclidean distance. 

Obtaining an optimal transformation a that minimizes the residual is the goal of ICP method. In our 

work, the residual is used to evaluate symmetry of floor patterns. How can we utilize this method to 

our motion data? And how can we reflect the temporal aspect of symmetry? For this, we used the 

approach of Kwon et al [21]. They modeled the locomotion paths as a 3D mesh in which the third axis 

represents time. Likewise, we converted our floor pattern as a 3D point cloud with time as the third 
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axis (Fig. 6). In this way, we can include temporal aspects in addition to the spatial symmetry for 

considering symmetry. For instance, symmetrical paths with a slight time delay can also be detected.  

In our work, we only consider symmetry of dancers’ paths with respect to the vertical center axis. 

Therefore, our cost function for symmetry is 

𝑐𝑜𝑠𝑡@X""#*YX = -𝜀(𝑟[, 𝑃, 𝑃) − 𝜀01$2- 

where 𝑟[ denotes reflection transformation in the vertical center axis and  𝑃 is the point cloud made by 

dancers’ paths. The smaller 𝜀(𝑟[, 𝑃, 𝑃) is, the more symmetrical the floor pattern is. Fig. 7 shows 

examples of two floor patterns with high and low symmetry values. 

 
Fig. 6 Conversion from 2D paths (left) to 3D point clouds (right). Vertical axis represents time 

 
Fig. 7 Top view of generated floor patterns with different desired symmetry values (ICP residuals are 

0.611m for the left, 4.179m for the right. More symmetric result is obtained in the left example. Other 

features were controlled to be nearly equal)  

3.3.4 Entropy 

The three features introduced so far are related to individual paths and do not control group-wise 

behavior. As we mentioned in the beginning, the group-wise behavior is an important element of dance 

piece. Specifically, we focus on controlling the uniformity or complexity of group motion. To achieve 

this property, we used the concept of entropy. Shannon’s entropy is a measure of information. Eduardo 

et al. [31] used this concept to measure the diversity of solutions in their optimization method. 

Oulasvirta et al. [32] analyzed the full-body motions of a dancer with information capacity, or 

throughput. In our work, the entropy is used for measuring the degree of complexity of the group-wise 

behavior of our floor pattern.  
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At each time frame, the angle of movement direction of all dancers are collected and the histogram of 

the angles is calculated. For staying dancers, they are categorized separately in the histogram as it is 

not possible to estimate their direction. The discrete probability distribution of the angles is then 

obtained by dividing the histogram by the number of dancers. Entropy is then estimated from the angle 

probability histogram.  

Η"#$% =
∑ ∑ 4𝐾 × 𝑃𝑟𝑜𝑏*,+ × log 𝑃𝑟𝑜𝑏*,+:

<bcd
+

;
*

𝑇  

𝐾 = − log(𝑁e+%)	

where 𝑃𝑟𝑜𝑏*,+ denotes the possibility of the i’th direction angle at time t and 𝑁e+% is the number of 

histogram bins. We divided the angles into 21 bins where 20 bins for each angle and 1 for zero velocity. 

The entropy at a time step is calculated to be low if the dancers move in the same direction at the 

moment. Conversely, the entropy is higher when the dancers move more individually, randomly, or 

chaotically. The average of the entropy over every time frame is used as the cost function.  Fig. 8 

shows example of two floor patterns with low and high entropies. 

𝑐𝑜𝑠𝑡#%*Y1AX = -Η"#$% − Η"#$%,01$2- 

 
Fig. 8 Top view of generated floor patterns with different entropy values (0.012 for the left, 0.517 for the 

right. Other features were controlled to be nearly equal)  

 Evolution 

With the floor pattern and feature models described above, our system runs a genetic algorithm to 

obtain a floor pattern with the desired properties. Specifically, a multi-objective genetic algorithm is 

used. To this end, one needs to set initial conditions, which include the size of stage, musical structure, 

and the number of dancers. Additionally, one sets the desired values of the features, which are time, 

space, symmetry, and entropy.  

Based on the initial conditions, the first generation with random genotypes is generated. Subsequent 

generations are created with a conventional process of genetic algorithms: selection, crossover, and 

mutation. One cycle of these three processes yields two new solutions. After testing physical feasibility 

of each solution, adequate ones are added to the set of new generation. The selection, crossover and 
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mutation process are repeated until it fills the set of new generation. Pseudo code of this process is in 

Fig. 9 and details of each process will be described below. 

 
Fig. 9 Pseudo code for generating one set of new solutions 

 

Selection. Pareto ranks [20] of each solution in the latest generation are obtained and those ranks are 

converted into fitness. Pareto dominance is suited for comparing elements with multiple features in 

different units and scales. Its basic idea is introduced in Fig. 10. By comparing each feature 

respectively, one solution is called dominant to another if it is superior in all aspects. Pareto rank of one 

solution is the number of other solutions being dominated by the solution. The Pareto ranks are 

converted to fitnesses to run roulette-wheel selection. The formula for the fitness of the i'th solution is 

as follows: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠+ =
𝑟𝑎𝑛𝑘+ − 𝑟𝑎𝑛𝑘"+%
𝑟𝑎𝑛𝑘"$k − 𝑟𝑎𝑛𝑘"+%

𝑠 + (1 − 𝑠) 

where ranki is the rank of the i'th solution, rankmax and rankmin are maximum and minimum ranks in all 

solutions. The parameter 𝑠 denotes the selection pressure, which decides the selection chance gap 

between the best and worst solutions. With 𝑠 = 0.8, the fitness guarantees a minimum 20% of selection 

chance for inferior solutions to encourage the diversity of solutions. 

var solcount=0 

newGeneration = {Æ} 

 

While solcount < 400{ 

 

sol = randomly select two solutions from the last 

generation 

 

crossover sol[0] and sol[1] 

 

for(i=0 ; i<2 ; ++i){ 

mutate sol[i] 

 

if sol[i] is feasible & solcount<400 

Add sol[i] to newGeneration 

solcount++ 

} 

} 

 

Return new newGeneration 



 

 

14 

 
Fig. 10 Example of Pareto dominance in 2 feature (f1 and f2) space. Assuming the minimum-cost problem, a 

is lower in all features than b and c. It makes a dominant to both. Solutions b and c are superior in one 

feature and inferior in the other, so they are not dominant to each other 

As another means for promoting diversity, we applied the fitness sharing and niching method [33]. 

The fitness sharing technique keeps the population diverse by penalizing the fitness of solutions if there 

are similar solutions in the same generation. Niching considers the closeness of two solutions for the 

penalty. The similarity of solutions is estimated with the ICP residual between two solutions, which 

was used for symmetry. For each solution, its niche count, which is the number of other solution in 

range of its niche, is calculated and its fitness is divided by its niche count as follows: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠+ ←
𝑓𝑖𝑡𝑛𝑒𝑠𝑠+

𝑛𝑖𝑐ℎ𝑒	𝑐𝑜𝑢𝑛𝑡+
 

Among the whole number of solutions in each generation (mostly 400 in our work), two solutions are 

selected with the roulette-wheel method [15] based on the estimated fitness. With these two solutions, 

crossover process follows. 

  

Crossover. Normally, the crossover method differs depending on the structure of the chromosome and 

the goal of computation. The chromosome of our work is represented as a 2D matrix.  Rows and 

columns represent the dancers and time respectively, and elements of the matrix are motion keys. 

Therefore, a certain area of the matrix decides the behavior of some dancers within some time range.  

Therefore, cutting off and swapping the arbitrary areas of the matrix is a reasonable approach for the 

crossover. We chose rectangle as the shape of the crossover window [34]. Fig. 11 is an example of our 

crossover method. 
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Fig. 11 An example of crossover operation. Square areas of (a) and (b) are swapped to generate child 

solutions (c) and (d) 

Mutation. After the crossover, the mutation process follows. Though our chromosome structure is a 

2D matrix, each element represents varying types of keys with different number of variables, which 

makes mutation trickier than typical genetic algorithms with binary or integer genotypes. In our work, 

we applied three kinds of stochastic mutations: removal, addition, or modification. For every row and 

column, i.e. every dancer and interval, suitable mutation operations were applied. Firstly, for the 

existing keys, each of them is removed with a certain probability. Secondly, for empty slots where no 

key is defined, new keys are added with a given possibility. The choice of key type and attributes are 

set randomly. Thirdly, the attributes of existing keys, including time and target dancer, are randomly 

changed with a certain probability within some range. For all those mutation operations, the mutation 

probability and the range of action are initially set heuristically and then gradually reduced with the 

evolution [35]. In the early stage of evolution, a higher mutation rate is recommended for the broader 

exploration of the solution, and it is lowered at a later stage to keep the discovered superior solutions. 

The equation for the mutation rate is as follows:  

𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒 = 1 − 𝑟(76
"
s)

b
	

where 𝑟 ∈ [0,1] denotes a random probability that changes every time, 𝑀 is the maximum number of 

generation, m is the current generation, and b is a predefined constant, which was set to 5 according to 

Michalewicz’s recommendation [35].  

When a new solution is generated, we first examine its feasibility: Solutions that deviate from the 

stage boundaries or violate the speed limit of dancers are discarded before evaluating their fitness. At 

this point, one new solution of floor pattern is complete. This process is repeated until it reaches the 

maximum population. As aforementioned, pseudo code of the cycle is as Fig. 9. This whole process is 

repeated for every generations. Instead of implementing algorithm to monitor convergence of the 

solutions, we simply fixed the number of generations to 400, which were enough for convergence for 

most cases. 

Fig. 12 shows a typical of convergence behavior of each cost term in our evolution system.  This plot 

shows that our system successfully converges to a minimum cost, getting closer to the desired input 
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parameters. Entropy increases from zero in the beginning because the initial floor pattern is a simple 

uniform collective movement.  

 
Fig. 12 An example of the time, space, symmetry, entropy costs change in evolution process 

Fig. 13 shows a set of generated floor patterns. We implemented a graphic user interface to browse 

generated results. Each floor pattern is visualized as a thumbnail to allow for easy browsing. Users can 

choose a floor pattern and view it animated on an extra viewer. Top row shows the first random floor 

patterns. Iteration proceeds from top to the bottom. Solutions in each row are arranged in decreasing 

order of the score. As it is inefficient to observe all 400 solutions in every 400 generation, the browser 

shows floor patterns in every 40 generations and only 10 best solutions in each generation. From the 

top row to the bottom, one can see that the initial random solutions evolve to various floor patterns that 

share common feature characteristics. In this example, floor patterns commonly show dynamic, straight 

and ordered style. 

 
Fig. 13 Graphic user interface for browsing generated floor patterns. Initial random solutions and final 

optimized solutions are shown in the top and bottom rows, respectively 
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Our system was implemented with Java language and tested with a laptop PC equipped with a 2.8 

GHz Intel Core i7 processor and 16GB 1600 MHz DDR3 memory. We observed that the solutions 

converge stably within 400 generations of iteration with constant 400 populations, which takes 22.6 

minutes. 

4 Evaluation 

 User test 

In the previous section, we showed that our system successfully converges into solutions that satisfy 

user-given preferences. To evaluate whether the results generated with some desired feature values 

agree with an audience’s perception, we performed a user test as follows.  

Firstly, we generated 10 floor pattern sets with different feature values. Each of the four features has 

lower and upper bounds. These bounds are either due to the nature of the features (e.g., entropy cannot 

be lower than 0 and the ICP residual is constrained by the stage size) or some reasonable limit. The 10 

sets of floor patterns were generated within these boundaries. Initial conditions set to the evaluation 

were as follows: Number of dancers: 6, duration: 15 seconds, BPM: 120, and number of meters: 4. The 

first set was the baseline in which every parameter was to the middle of the boundaries. Next eight sets 

were achieved by setting only one of the four features to either the maximum or minimum while fixing 

all other feature values to the median. As the last set, we created one popular scenario that has high 

velocity and symmetry and low entropy. For each of the 10 sets of feature values, we sampled two 

floor patterns with the lowest cost. Therefore, 20 floor patterns were sampled and these were used for 

the user test. 

Test participants were shown video clips (Fig. 14) of each floor pattern. After watching each video, 

subjects were asked to answer four questions for each video (Table 1). Each question showed 

qualitative keywords for each feature and the subjects were asked to grade the floor pattern in five 

levels based on how they felt about the video. Subjects repeated this process for all 20 video clips. A 

total of 22 subjects participated in the test, among which seven had experience as a dancer on stage. 

 



 

 

18 

Fig. 14 Example of the floor pattern video clip 

 1 2 3 4 5  

Slow, static      Fast, dynamic 

Symmetry      Asymmetry 

Straight, sharp      Curve, smooth 

Ordered      Chaotic 

Table 1 Questionnaire of the user test (translated from Korean). Subjects were requested to grade each row 

from 1 to 5 after watching each video clip 

The test results were analyzed to find correlations between the subjects’ responses and the actual 

feature values of each floor pattern. Firstly, to eliminate personal tendency in grading, the responses 

were normalized for each feature and each subject. The normalized responses and feature values were 

plotted in Fig. 15. The Pearson correlation of the normalized grades and actual feature values of the 

sample floor patterns were estimated. Higher correlation coefficient implies that, for each floor pattern, 

subjects perceived the intended intensity of feature values. Firstly, we ran the analysis for each subject 

and each feature separately, which led to 88 (22 by 4) coefficients. It showed promising results with the 

average of 0.488, which indicates moderate correlation. By summing up the data, the Pearson 

correlations of entire subjects for each feature were obtained and Table 2 shows the results. These 

correlation ratios imply moderate or stronger positive correlations, which means that the subjects 

recognized different impressions as intended when the feature values changed. The time (velocity) 

feature, the simplest feature, shows the highest score, and other features show similar scores while 

symmetry tends to be lower than others. There was no noticeable difference in observation between 

dancer and non-dancer groups (the second and third rows of Table 2).  

 

  
           (a)      (b) 
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           (c)      (d)  

Fig. 15 Normalized responses (y-axis) and feature values (x-axis) of each feature of floor patterns. (a), (b), (c) 

and (d) represent the results of time, symmetry, space, and entropy, respectively. Different color indicates 

different participant 

 
Time Symmetry Space Entropy 

All subjects 0.604 0.405 0.461 0.485 

Dancers 0.636 0.485 0.478 0.411 

Non-Dancers 0.588 0.368 0.453 0.519 

Table 2 Pearson correlations of each feature variable for each subject group 

 Demonstration 

In the early stage of our research, we produced a dance piece by using our system. Although the early 

version of our system had some differences from the current system, it demonstrated how our system 

could be utilized in actual dance productions. The early system used the average speed and the average 

position of each path to measure the time and symmetry elements. Instead of the multi-objective 

algorithm, we used the linear combination of cost functions.  

We produced a two-minute piece. One of the authors choreographed the first 50 seconds in a 

conventional way and then applied our system in the remaining 70 seconds. The paths for 70 seconds 

were generated and appropriate dancing motions were choreographed on the generated paths.  Group-

wise dancing motions were assigned to a group-wise path (Fig. 16). If a path is individual, it naturally 

became a solo part. When two dancers almost collided once, it was interpreted as a duet lift motion. 

Some segments in the paths were somewhat too slow, and such parts were utilized for theatrical 

expression rather than dancing. 

If a choreographer designs such a complicated sequence in a conventional way, not only does it take 

enormous efforts to plan, but there are also problems with validating, recording, and sharing it with 

dancers. Our system showed its possibility as an efficient interface to overcome these problems. 

Notably, throughout the choreography process, the floor pattern was actively interpreted and modified 

by a choreographer rather than being followed passively. In this context, the generated floor pattern 
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serves as a clue or blueprint of the piece rather than a precise and absolute drawing, which agrees with 

the philosophy of Scuddle [1]. 

 
Fig. 16 Floor pattern for demonstration 

In practice, the selected floor pattern was converted to a video file and it was provided to the dancers 

and a trainer as a reference for their practice. The trainer who managed the practice gave us useful 

comments. The visualized floor pattern helped them remember their paths and corresponding motions 

and understand the big picture of the whole dance rather than the individual positions of dancers. 

However, as the choreographer interpreted and modified the floor pattern, the choreography was not 

exactly the same as the video, which confused the dancers a little. Usability will improve if a 

choreographer can manually modify a floor pattern shape just as he/she interpreted. 

The piece was performed on stage with an audience (Fig. 17). Feedback was obtained from the 

audience after the performance. They were interested in many choreographic events happen frequently 

with complex combinations. This is a big characteristic of contemporary dance works compared to 

ballet. In order to create such a complex sequence in the production, it is common to let dancers 

improvise with fragmentary motivations and refine the outcome of random behaviors. It is an iterative 

process that takes a lot of time and energy. It is promising that we have been able to produce similar 

results in a short time using our system. 

One of the audience in the front row said that he/she found it difficult to determine where to focus 

while another at the back row stated that he/she could appreciate the transitions on the entire stage. It 

suggests the importance of focus of a floor pattern, i.e., where a choreographer wants the audience to 

see the dance. It is a rather higher-level feature that include cognitive and theatrical aspect. With our 

current work as basis, it would be our future work to expand to such higher-level features.  
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Fig. 17 Demonstration performance scenes. Dancers are performing as one group (top left) or several parts 

(top right and bottom left). Collision of path induces interaction (bottom right) 

 Large-scale environment 

Our system was mostly implemented and tested for situation with 3 to 6 dancers, which proper 

minimum number for showing collective and composite floor pattern. To see another potential of our 

system, we tested it with 18 dancers, which 3 times more. Firstly, our iteration system showed that its 

features converge successfully in the large-scale situation and one case was plotted in Fig. 18. 

 
Fig. 18 An example of the time, space, symmetry, entropy costs change in evolution process for 18 dancers 

We ran multiple iterations with different feature configurations and Fig. 19 shows some examples. From top 

to the bottom, each pair of floor patterns is result of slow and fast, symmetrical and asymmetrical, curved 

and straight, and ordered and chaotic features respectively. While it showed meaningful distinctive 

differences, it was thought too complicated and not enough geometric correlations between dancers, which 

are what people often expect from large-scale group dances. Applying mesh or hierarchical structure might 

improve such aspect in the future. 
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Fig. 19 Samples of generated floor patterns with 18 dancers 

5 Discussion and Future Work 
Aiming to assist choreographers, we developed a system that generates floor patterns for dance. 

Through a literature survey, we selected four major feature elements and modeled them mathematically. 

We defined our own model that efficiently expresses dance floor patterns. To successfully obtain 

diverse solutions that satisfy a choreographer’s desires, we developed appropriate evolution schemes 

for the floor pattern.  

User test shows that our system is capable of generating floor patterns that subjects recognize the 

intended differences of feature values. Our system provides choreographers with a set of floor pattern 

ideas that reflect their preferences, thereby improving the efficiency of the creative process of 

choreography. In addition, this system will help them explore outside their comfort zone and guide 

them to a novel creation methodology. While we communicated with dancers and reflected their 
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opinions throughout our research process, our system has not been used in an actual dance production 

yet, which remains our next task. 

Our work has a number of limitations, which can be interesting future research topics. First, the four 

features that we implemented can have more complex dimensions. For example, the desired value of 

time (speed) element may change with time. Space element may change with the gaze or gestures of 

dancers. In addition to the global symmetry that we implemented, partial symmetry, repetition [27], 

and temporal symmetry [6] might induce more geometric structures. In addition, while our system 

treated all features with equal importance, a choreographer might want to treat some features more 

importantly than others. Such preference control is another promising future work and Fang’s work [36] 

can be referred to for this purpose. Also, as aforementioned, choreography is a composite process that 

choreographers should consider vast elements. For these kind of problems, machine learning-based 

approach would compensate the limitation of our rule-based approach. It will require acquisition of 

digitized path data of current dance pieces and extracting behavior information from the raw motion 

data like Liu’s work [37]. 

Choreography is a complicated integrative process that requires consideration of numerous aspects. 

For instance, musical mood, flow, lyrics, and theatrical plot are important parts of the choreography, 

but we did not consider them in our work. The relation between such higher-level features and an 

actual floor pattern is not straightforward, and between them a large cognitive distance exists. One 

promising way to relate these higher-level features and a floor pattern would be to add an intermediate 

layer between them. Laban’s theory is thought to be a proper tool for this because it was invented for 

scientific expression of dance. From this perspective, our work may serve as the mid-layer that 

abstracts high-level features from physical floor pattern data. Connecting our features to the higher-

level features might be the next step of big challenge, which will require affective computing, semantic 

analysis, as well as diverse artistic studies. Before such an ideal choreographic tool becomes available, 

for many dancers with understanding of Laban’s theory, we believe that our system provides intuitive 

parameters to achieve a certain floor pattern style that a choreographer wants.  
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