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Fig. 1. Left two: initial deformation and its skinning weight computed by an automatic algorithm. Our spline interface allows for convenient and intuitive
editing of skinning weights by using a small number of splines defined on a mesh surface.

Despite the recent advances in automatic methods for computing skinning
weights, manual intervention is still indispensable to produce high quality
character deformation. However, currentmodeling software does not provide
efficient tools for the manual definition of skinning weights. Widely used
paint-based interfaces gives users high degrees of freedom, but at the expense
of significant efforts and time. This paper presents a novel interface for
editing skinning weights based on splines, which represent the isolines of
skinning weights on a mesh. When a user drags a small number of spline
anchor points, our method updates the shape of the isolines and smoothly
interpolates or propagates the weights while respecting the given iso-value
on the spline. We introduce several techniques to enable the interface to
run in real-time, and propose a particular combination of functions that
generates appropriate skinning weight over the surface. Users can create
skinning weights from scratch by using our method. In addition, we present
the spline and the gradient fitting methods that closely approximate initial
given weights, so that a user canmodify the weights with our spline interface.
We show the effectiveness of our spline-based interface through a number
of test cases.

CCS Concepts: • Computing methodologies→ Animation;Mesh geom-
etry models;

Additional Key Words and Phrases: Character Modeling, Rigging, Skinning,
Spline

ACM Reference Format:
Seungbae Bang and Sung-Hee Lee. 2018. Spline Interface for Intuitive Skin-
ning Weight Editing. ACM Trans. Graph. 1, 1, Article 1 (January 2018),
14 pages. https://doi.org/10.1145/3186565

1 INTRODUCTION
Among many approaches for object and character deformation,
closed-form skinning methods, such as Linear Blend Skinning (LBS)
and Dual Quaternion Skinning (DQS), are widely used as they are
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fast and intuitive. The quality of these skinning methods highly de-
pends on specifying appropriate skinning weights to vertices, which
requires the intensive efforts of professional artists in production
animation.

Many studies have proposed automatic skinning algorithms (e.g.,
[Baran and Popović 2007; Dionne and de Lasa 2013; Jacobson et al.
2011]) and they have been useful for generating initial weights.
However, since most of these algorithms only deal with geometric
properties of the rest mesh, e.g., geometric deformation energy, they
cannot reflect other important factors related to skinning, such as
physical properties that might have different values over a mesh
and cause non-uniform mesh deformation. Even if there were an
advanced automatic method that takes these factors into account, it
is unlikely that automatic algorithms can exactly satisfy user needs.
Therefore, manual intervention is almost always necessary for high
quality skinning.

Software such as Maya and 3DS Max provides two kinds of meth-
ods for modifying skinning weights. One method uses modifiable
primitive shapes, such as ellipsoids, that define the influence range
of joints. This method is effective as long as the desired configura-
tion of skinning weights is similar to the primitive shapes, which is
not always the case. In general, this interface lacks fine control of
skinning weights. The other standard method uses a paint-based in-
terface, by which a user manually draws skinning weights on a mesh
surface. This tool provides high degree of freedom in specifying the
skinning weights, but is not convenient. Users need to paint repeat-
edly with many strokes to reach a satisfying result while frequently
changing many parameters, such as brush size and smoothness. De-
spite the advances in skinning technology, the computer graphics
community still lacks in a method that allows for detailed control
of skinning weights with ease.
This paper introduces a novel interface for editing skinning

weights by using splines. In our interface, a spline curve defines an
isoline of skinning weights. When a user manipulates the spline
curves on a mesh surface, which changes the desired shape of the
isolines, our method determines the skinning weights on the entire
mesh such that the desired isolines are satisfied while the skinning
weights between the isolines are smoothly interpolated or prop-
agated. A spline-based skinning interface can inherit the strong
advantages of splines, e.g., controllable smoothness and level of
detail. One can also change the overall skinning weights without
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losing smoothness by only dragging a few anchor points. Creating
a more complex weight configuration is possible by assigning more
anchor points. Specifically, we use the method of [Panozzo et al.
2013] that computes spline curves on surface meshes in real-time.

Figure 1 shows an example of how splines are defined on a mesh
surface and modified to edit the overall skinning weight of the
surface. A basic workflow of our system is shown in Fig. 2. A user
can generate splines from scratch by using a GUI or extract them
from given initial skinning weight. As the splines are edits, skinning
weight is updated to satisfy the spline constraints.

Fig. 2. Workflow of our system.

The contributions of this paper are as follows:
• We present a first spline-based interface for defining skinning
weights and show the effectiveness of the interface.
• We introduce techniques that enable the spline-based skin-
ning interface to run in real-time. These include a set of
methods that efficiently compute skinning weights while re-
specting user-specified initial weights and an efficient spline
fitting algorithm.
• Among several candidate smoothing functions, we propose
a particular combination of functions that generates appro-
priate skinning weight distribution over the surface given
splines.

The remainder of this paper proceeds as follows. After reviewing
related work in Sec. 2 and the basic theories of splines in Sec. 3,
we introduce a set of methods to compute skinning weights in
Sec. 4. Then, Sec. 5 explains the spline editing and fitting procedures.
Section 6 describes our experiments on skinning weight generation,
and Sec. 7 introduces further applications that our spline interface
can be used for besides the skinning weight editing. Finally, Sec. 8
concludes the paper.

2 RELATED WORK
Compared with intensive efforts for developing automatic algo-
rithms that generate skinning weights, studies on efficient interface
for manual weight design have been more or less ignored in com-
puter graphics research. In this section, we first review important
previous work on the automatic computation of skinning weights.
Spline curves that can control the skinning weights must be defined
on a surface domain. Thus, we subsequently review several methods
for modeling splines on surface meshes.

Automatic Generation of SkinningWeights. After the intro-
duction of closed-form skinning methods, such as LBS and DQS [Ka-
van et al. 2008], researchers have developed methods that auto-
matically generate appropriate skinning weights for given meshes.
One of the pioneering work is [Baran and Popović 2007] that intro-
duced heat diffusion weight, see Sec. 4.3 for its details. Wareham
and Lasenby [2008] developed a modified heat diffusion weight by
introducing the concept of light illumination to skinning weights,
and Bang et al. [2015] added a bi-Laplacian term to the heat diffusion
weight to control the smoothness of the weight. Borosan et al. [2012]

introduced a local computation method for the heat diffusion weight.
The mean value coordinates [Floater 2003; Ju et al. 2005], harmonic
coordinates [Joshi et al. 2007], and green coordinates [Lipman et al.
2008] were introduced for cage-based deformation. The Bounded
Biharmonic Weight (BBW) method [Jacobson et al. 2011] achieved
improved smoothness and local controllability with non-linear opti-
mization of the Laplacian energy with constraints. An additional
advantage of the method is that it can be used with arbitrary rig
types, including bones, points, and cages. Dionne and de Lasa [2013]
introduced the Geodesic Voxel Binding (GVB) method that is ca-
pable of computing skinning weights for a geometric model with
multiple non-manifold meshes. Kavan and Sorkine [2012] proposed
a method for optimized skinning weights that approximate the skin
deformations produced by nonlinear variational deformation meth-
ods [McAdams et al. 2011]. Wang et al. [2015] introduced skinning
weights that satisfy the linear deformation subspace. The weight
reduction technique [Landreneau and Schaefer 2010] can be applied
to existing skinning weights to reduce the number of influencing
controllers per vertex.
If multiple example poses or shapes are available, for example,

through shape capturing, inverse methods [Le and Deng 2012, 2014]
can be applied to find optimal skinning weights that reproduce the
captured shapes. Statistical shape models such as [Anguelov et al.
2005; Pons-Moll et al. 2015] typically learn identity-dependent and
pose-dependent components that can create realistic deformations
without resorting to skinning. A notable difference is [Loper et al.
2015], which learns identity and pose-dependent skinning weights
for LBS. Mohr et al. [2003] noted the tedious process of paint in-
terface and proposed a method to compute skinning weight from
example deformations created manually by users. For facial anima-
tion, where blendshapes are used for creating mesh deformation,
Lewis and Anjyo [2010] introduced an inverse problem of solving
blendshape weights with direct manipulation of geometry.

All these automatic methods for generating skinning weights can
be used to provide an initial solution, upon which our spline-based
skinning interface can be applied to reflect a user’s particular need.

Spline Curves on SurfaceMesh. A spline curve on general sur-
faces has been realized by either using a variational approach [Hofer
and Pottmann 2004] or as an iso-contour of a scalar field [Jin et al.
2009]. Both approaches require solving a relatively costly optimiza-
tion. Thus, they are not suitable for interactive applications such as
ours. Feng and Warren [2012] developed biharmonic B-splines with
irregular knots by constructing a discrete bi-Laplacian, and Hou et
al. [2016] improved the method such that biharmonic B-splines can
be defined on arbitrary compact 2-manifolds. Their work provides a
theoretically robust generalization of univariate B-splines to curved
surfaces, but the computational load is too heavy to be used for our
purposes.

Some fast algorithms to generate splines on surfaces take an ap-
proach that first computes an initial position by using weighted
averaging in Euclidean space (thus, the position is not constrained
to a surface), and then projects the position onto the surface. Wall-
ner and Pottmann [2006] simply used 3D Euclidean space for this
purpose. Panozzo et al. [2013] developed a high dimensional Eu-
clidean embedding technique to approximate weighted averages
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Nv number of vertices
Ns number of spline points
Na number of anchor points
No number of isoline points
ws Skinning weight
wд Gradient weight
K Anchor weight
G Gradient anchor weight
Cp position of anchor points
ci iso-value of anchor points
cд gradient coefficient value of anchor points
Sp position of spline points
si iso-value of spline points
Op position of isoline points
oi iso-value of isoline points

Table 1. Frequently used symbols

of points on surfaces. Their method creates smooth spline curves
with arbitrary anchor points on a surface mesh and performs fast
enough to be used for real-time applications. We used their method
to define splines in our work.

3 PRELIMINARY: SPLINE MODEL

3.1 B-spline
We use the standard cubic B-spline model in our method. The B-
spline curve is widely used in many applications because of its
smoothness and local controllability. By moving an anchor point,
we can selectively modify the B-spline curve without losing its
geometric continuity. In Euclidean space, a B-spline curve is defined
as a weighted sum of B-spline basis functions Ri,r (u), which are
Cr−2-continuous (r − 1)-th order piecewise polynomials (r = 4 in
our experiment). Given a set of anchor points cpi , a B-spline curve
s (u) is given by:

s (u) =
n−1∑
i=0

c
p
i Ri,r (u). (1)

With Na number of anchor points, basis functions Ri,r (u) are de-
fined on a knot vector t = t0, t1, ..., tNa+r−1, tNa+r .

For a set of sample parameter valuesU = {u0, · · · ,uNs−1}, we can
represent the positions of the corresponding points on the spline
Sp (∈ RNs×3), dubbed spline points in this paper, in a matrix form:

Sp = BCp , (2)

whereCp (∈ RNa×3) is the position of anchor points andB(∈ RNs×Na )
is the basis matrix that corresponds to U . Table 1 summarizes the
symbols used in the paper.

Open and Closed Loops. We use splines as either a closed loop
curve or a clamped open curve, and both types require constraining
the knots.

For a closed loop curve, the loop closure is ensured by duplicating
the first three points and adding them as virtual anchor points.
However, this trick breaks the form of (2). Instead, we achieve
the loop closure by modifying the basis function B by adding the
first three columns value to the last three columns: ∀k : Bk, j =
Bk, j + Bk,Na−j−1 (for j = 0, 1, 2).

For an open curve, we want our open spline curve to be clamped
such that the curve’s end points match their first and last anchors
because they give the user a more intuitive control. This is achieved
by defining knot vector such that the first and last knots are re-
peated with multiplicity equal to the order r as follows: u0 = ... =
ur−1,uNa+1 = ... = uNa+r .

Fig. 3. Spline generated with closed and
open with same anchor points.

In both case, only
the basis matrix B in
(2) is changed. With
the anchor points being
fixed, the topology of
the spline can be eas-
ily changed by replac-
ing the basis matrix. Figure 3 shows splines generated with closed
and open conditions. More details on the B-spline can be found in
[De Boor 1978].

3.2 Spline on Surface
In [Panozzo et al. 2013], an Euclidean-embedding metric is defined
by an embedding e : M → RD whereM is a metric space and
D is set to 8. The distance between two points on the surface is
calculated as the Euclidean distance between their embeddings
d (x1, x2) = ∥e(x1) − e(x2)∥. By using the Fréchet mean with a
number of anchors xi and weights ξi , the weighted average on
surface is defined as:

x̂ = argmin
x∈M

∑
i
ξid (x, xi )2. (3)

Using (3), one can define a spline curve on the surface as a function
of a parameter u ∈ [0, 1]:

x̂(u) = argmin
x∈M

Na−1∑
i=0

Bi (u)d (x, c
p
i )

2 (4)

After solving (4), the original method [Panozzo et al. 2013] uses
the Phong projection technique to project the x̂ to surface. To ac-
celerate this process, a local search method is used that combines
a greedy search for the locally nearest vertex and a breadth-first
search for a target triangle to which x̂ is projected. We found that
sometimes this searching scheme fails and creates unnaturally sharp
protrusions in our spline, a possible problem mentioned in their pa-
per [2013], and hence developed a more robust local search scheme
customized for our purpose. We first find a Phong projection with a
global search for the first spline generation. Subsequently, when an
existing spline is edited, we examine the faces that have the current
isoline as well as their adjacent faces (in three rings on each side of
the isoline) to find the closest face for the Phong projection.
As a result, we obtain spline points on the surface. The position

of a spline point will be represented in terms of the barycentric
coordinates of the face the point belongs to.

Sampling Spline Points. We visualize the spline as connected
line segments made by sample points Sp = {s0, s1, ., , .sNs−1} of the
spline, where spk = x(uk ) is a sample point for a parameter value of
uk . In order to obtain more or less uniformly sampled points on the
spline, the number of sampling parameters uk between two anchor
points cpk and cpk+1 is set to be proportional to d (cpk , c

p
k+1). In Sec.
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4.1, we will use these spline points to set constraints on weight
computation.

4 WEIGHT COMPUTATION
Given a set of splines, our proposed technique computes a smooth
scalar field that interpolates or approximates the spline constraint.
For this, we introduce two methods for computing skinning weights:
an interpolation-based method and a diffusion-based method. If one
iso-value spline is specified, the skinning weight is computed by the
diffusion-based method. On the other hand, if there is more than
one iso-value spline, the hybrid of both methods is used. We also
investigate local computation that reduces the region of non-zero
weight and accelerates the computation. A method to decompose
the influence of anchor points, dubbed anchor weight, on a vertex’
skinning weight is introduced for faster weight editing. For a more
sophisticated control of weight, the gradient control technique is
introduced to add gradient weight to the skinning weight. Final
weight is computed as sum of skinning weight of gradient weight.
The overall framework of the weight computation is illustrated in
Fig. 4.

Fig. 4. Overview of weight computation.

Figure 5 shows the color codes for the anchor weight (a) and
skinning weight (b).

(a) (b)

Fig. 5. Color codes for anchor weight (a) and for skinning weight (b).

4.1 Spline Constraint
Our primary condition to be satisfied is the spline constraint, i.e.,
the skinning weights of the vertices must be determined to agree
with the given skinning weight of the spline. We use barycentric
coordinates to interpolate the vertex skinning weights for eachmesh
face. That is, the weightw (s

p
k ) of a spline point s

p
k is expressed as:

w (s
p
k ) = bk0wk0 + bk1wk1 + bk2wk2 = s

i
k , (5)

wherewkj denotes the weight of a vertex kj of a face (for j = 0, 1, 2)
to which the spline point spk belongs, and bkj are the barycentric
coordinates of spk with respect to the vertex. Therefore, the vertex

weights wkj must be determined to satisfy w (s
p
k ).

1 Stacking the
barycentric equation (5) for a set of desired weights of spline points
into a matrix constitutes a linear equality constraint equation:

Ax = si , where si = Bci (6)

The matrix A(∈ RNs×Nv ) is a matrix with Ak,kj = bkj that stacks
the barycentric conditions (5) in each row, x is the skinning weights
of all vertices, and si , ci is a vector of the iso-value of the spline
points and anchor points respectively.
The skinning weight ws can be computed by the minimizing

the energy E (x) that satisfies the constraints of the linear equality
equation in the form:

ws = argmin
x

E (x) subject to Ax = si (7)

The decision of energy function E (x) determines the overall shape
of the skinning weight. We first introduce two types of methods
that satisfy the spline constraint: the interpolation-based method
and diffusion flow method. We compute the skinning weight using
the diffusion flow method if there is only one iso-value spline and
use both methods together if there is more than one spline.

4.2 Interpolation-based Method
The technique of interpolating the scalar field on a surface given
point constraints has been introduced for generalized barycentric
coordinates [Floater 2003; Ju et al. 2005; Lipman et al. 2007; Rusta-
mov 2010]. For the specific application for the skinning weight of
articulated characters, methods based on harmonic functions [Joshi
et al. 2007] and bi-harmonic functions [Jacobson et al. 2011] have
been developed. We can similarly formulate our problem within a
surface with the linear equality constraint of spline. Specifically, we
minimize the quadratic energy under the spline constraint:

ws = argmin
x

xTQx subject to Ax = si , (8)

where Q (∈ RNv×Nv ) is a positive semi-definite matrix of quadratic
coefficients. We can solve this equation by using Lagrange multipli-
ers with a hard constraint problem of the form:

(
Q AT
A 0

) (
x
Λ

)
=

( 0
si

)
.

However, with this hard constraint, the positive semi-definiteness is
broken, and thus a fast Cholesky solver cannot be used. Alternatively,
we enforce the linear equality constraint weakly by appending a
quadratic penalty term to the original energy. This results in a new
quadratic energy of the form:

E (x) = αxTQx + (Ax − si )TU(Ax − si ) (9)

where the scalar coefficient α controls the importance between the
two terms and the matrix U (∈ RNs×Ns ) determines the weights
among the linear equality constraints.We setU to the identitymatrix
to give equal weights to every spline constraint. The minimizer ws

of the energy can be obtained from dE (x)
dx = 0, i.e.,

(αQ + ATA)ws = AT si (10)

1The spline points are obtained by (4). However, if more than one spline point of the
iso-value are given in one face, no vertex weights can satisfy the constraints in general.
Therefore, we simply select only one spline point at each face and discard the rest, if
any, on that face. The remaining spline points constitute Sp .
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Fig. 6. Skinning weight generated using interpolation-based method with
Laplacian (left), bi-Laplacian (middle), and sum of Laplacian and bi-
Laplacian (right) operators, with two iso-values of [0.2, 0.9]. In the second
row, the weight is multiplied to the normal direction of the vertices to de-
form the mesh to visualize the weight effect. Anchor points are omitted
from visualization.

By setting a proper coefficient of α (= 0.1 in our experiment), (10)
generates results similar to the solution with the hard constraint.

Choice of Operator. We now review the choice of energy for
the interpolation-based method. We first consider a common energy
in computer graphics: the Dirichlet energy, which is a quadratic func-
tional that measures how much a function x changes over domain:
E (x) = −xT Lsx, where Ls is a symmetric matrix containing the edge
weights. The corresponding Euler-Lagrange equation is the Laplace
equation: Lsx = 0. Another popular choice is the squared Lapla-
cian energy, which measures the magnitude of curvature [Jacobson
2013]: E (x) = xT LsM−1Lsx, where M is a diagonal mass matrix.
The corresponding Euler-Lagrange equation is the bi-Laplace equa-
tion: LsM−1Lsx = 0. Thus, we review the choice for the matrix Q
with the Laplacian operator Q = −Ls and the bi-Laplacian operator
Q = LsM−1Ls .
Figure 6 shows different skinning weight distributions solved

with Laplacian and bi-Laplacian operators when two splines of
iso-values [0.2, 0.9] are given. As can be seen in the figure, the
in-between regions of two splines show a similar skinning weight
distribution while the bi-Laplacian results in a slightly smoother
result. Differences are notable on the boundaries of the splines and
beyond as the bi-Laplacian creates a much smoother result and is
also capable of extrapolation.

With this observation, it may seem that the bi-Laplacian is a nat-
ural choice to be the operator. However, the extrapolating nature of
the bi-Laplacian often generates unintuitive results. Figure 7 shows
the skinning weights with three splines of iso-values [0.1, 0.5, 0.9].
The steep decrease of weights from 0.9 to 0.5 makes the bi-Laplacian
operator create a deep downfall below 0.1 in the region [0.1, 0.5],
which is counter-intuitive for the skinning as one would expect the
weight distribution in that region to be between 0.1 and 0.5. This is
due to the nature of the C1-continuity of the bi-Laplacian, which
propagates the slopes outside the boundaries. For a region bounded

Fig. 7. Skinning weight generated using interpolation-based method with
Laplacian (left), bi-Laplacian (middle), and sum of Laplacian and bi-
Laplacian (right) operators, with iso-values of [0.1, 0.5, 0.9].

by two iso-value splines, it is more intuitive to have the skinning
weights interpolating between the two iso-values, which is achieved
by the Laplacian operator.

We have observed that both the Laplacian and bi-Laplacian have
advantages and disadvantages. Aiming to take the benefits of both
operators, we propose to use the combination of two operators
−aLs + (1 − a)LsM−1Ls . The last columns of Figs. 6 and 7 show the
results for −0.5Ls + 0.5LsM−1Ls . One can see that the combination
inherits the interpolating nature of the Laplacian, with guaranteed
smoothness across the splines.

From the viewpoint of skinningweight distribution, the Laplacian-
based interpolation has another problematic phenomenon. While it
is natural that the weight decreases to zero as the vertex gets farther
from the lowest iso-value spline, the actual results in Figs. 6 and
7 show that the weights of the far region still remains similar to
the minimum iso-value. A solution to this would be to add another
spline with zero iso-value to where the weights should be zero, but
this is somewhat cumbersome. Instead, this problem is addressed in
Sec. 4.4 with the diffusion-based method that is described next.

4.3 Diffusion Flow Method
Diffusion flow is a mathematically well-understood model for the
time-dependent process of smoothing a given signal value [Botsch
et al. 2010]. Diffusion flow with the implicit Euler integration of
matrix is formulated as (I − h∆) f (t + h) = f (t ), where h denotes a
time period for the smoothing process. As h increases, the signal
value f (t + h) will be propagated more smoothly. The computation
of the skinning weight by using the diffusion-based method is intro-
duced by [Baran and Popović 2007] with the famous heat equation:
(H − L)w = Hp, where L = M−1Ls is a discrete approximation of
the Laplacian at each vertex. In their work, the initial values are
assigned to the p vector and different time parameters are given to
each vertex by using the diagonal matrix H. In our case, H can be
simplified to the identity matrix. By generalizing the Laplacian Ls
with −Q and by multiplying the mass matrixM to the equation, the
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Fig. 8. Top: Input splines with iso-values marked in the figure and the visu-
alization of the initial value p. Middle: Resulting skinning weight generated
with the diffusion-based method using sum of Laplacian and bi-Laplacian.
Bottom: Left two images show corresponding deformation applied on nor-
mal direction, and right image shows the skinning weight solved without
assigning vector p.

diffusion flow equation can be written as:

(βM + Q)ws = βMp, (11)

where β (= 0.1 in our experiment) is a time parameter for diffusion.
Formulating a quadratic optimization problem to satisfy the above
equation with the spline constraint leads to:

ws = argmin
x

xT (βM + Q)x − 2xT βMp s.t. Ax = si . (12)

Similarly to the interpolation-based method, we treat the constraint
as a soft constraint and obtain the solution as:

(αβM + αQ + ATA)ws = AT si + αβMp. (13)

Figure 8 shows the results for different spline configurations. We
set the initial value of vector p such that pj = sik if a vertex j is
located inside the spline of sik , and 0 otherwise. The method to
find the surrounding spline will be explained later in this section.
The Q matrix is set to −0.5Ls + 0.5LsM−1Ls to make it consistent
with the interpolation-based method. One can see that the diffusion
flow method smoothly attenuates the skinning weights to the outer
region without requiring the 0 valued isoline, which is a desired
property as a skinning weight generator. A notable limitation of the
diffusion flow method is that, as can be seen on the bottom row of
Fig. 8, it does not smoothly interpolate the weights between the two
iso-values, which give a staircase-like weight distribution

The above observations suggest that the diffusion-basedmethod is
a good choice for the case where the skinning weights can be simply

controlled by a single iso-value spline. In such a case, the diffusion-
based method exhibits natural weight attenuation properties while
avoiding spline interpolation.

Diffusion Flow for a Single Spline. In order to compute (13),
the vector p must be initialized with proper values as in Fig. 8 (top
right). If p is initialized with zero values and solved with one spline,
the value on the spline will be propagated from the spline, as in
Fig. 8 (bottom right). This is not a desired weight distribution for
skinning. In general, if a spline creates a closed region, the user
would want the region to share similar weights as the iso-value of
the spline and the weights to smoothly propagate to the outside,
as shown in Fig. 8 (middle right). For this, the system needs to
know the region, and this is achieved by asking a user to select
any vertex in the region. The region could be found by collecting
reachable vertices in a flood-filling manner from the selected vertex.
In our implementation, we applied the interpolation-based method
to find the bound region. Specifically, we solve (8) with an additional
constraint that the selected vertex has a very high weight (1000).
This makes weights higher than the isovalue of the vertices inside
the region, and we collect these vertices. Subsequently, we assign p
with pj = sik for the vertex j in the region and solve (13). The above
identification step is performed only once when a spline is created.
During the following spline editing process, the region is efficiently
updated by collecting vertices with weights higher than sik .

Another Derivation. We can also derive the equation for the
diffusion flow method purely from the energy minimization view-
point. In addition to the quadratic energy xTQx and the spline
constraint Ax = si , we encourage the weight to be similar to the
original value x = p. Putting these together leads to the energy
function of the form:

E (x) = αxTQx+ (Ax− si )TU(Ax− si )+αβ (x−p)TM(x−p) (14)

The matrix U determines the importance among the spline con-
straints and is set to I as in the interpolation-based method. The
mass matrix M is used to scale the importance of each vertex for
x = p with the area associated with the vertex. Minimization of (14)
results in the same equation as (13).

4.4 Hybrid Method of Interpolation and Diffusion
Wehave discussed the advantages and disadvantages of the interpola-
tion-basedmethod and the diffusion-basedmethod. To combine their
strengths, we develop a hybrid method for a mesh with more than
one spline. The idea is to divide the regions for the interpolation-
based method and diffusion-based method.

Fig. 9. Interpolation-based region Vl and
diffusion-based region Vd divided (right)
with given spline constraint (left)

Specifically, to take
advantage of its good
capability of interpolat-
ing iso-values of spline
constraint, we set a
interpolation-based com-
puting regionVl (∈ RNl×3)
as the vertices that will
be assignedwithweights
higher than the small-
est iso-value among the
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(a) (b) (c) (d)

Fig. 10. Skinning weight generated with iso-values [0.1, 0.5, 0.9] using the
interpolation-based method (a), the diffusion-based method (b), hybrid of
both (c), and hybrid with local computation (d). For a clear distinction on
zero-valued weight, the black color is used only on the vertices of zero
weight for this example.

splines. Then we set the remaining region as a diffusion-based re-
gion Vd (∈ RNd×3) to enjoy its good capability of diffusing iso-value
to surrounding region. Figure 9 depicts the division into regions.
If we rearrange the equation for skinning weight computation

(10) or (13) as a linear system Cws = d, and divide ws into weights
for the interpolation-based region ws

l (∈ R
Nl ) and for the diffusion-

based region ws
d , the linear system can be written as:(

Cl l Cld
Cdl Cdd

) (
ws
l

ws
d

)
=

(
dl
dd

)
, (15)

where Cl l ,Cld ,Cdl , and Cdd are corresponding block submatrices
of C. This equation is solved sequentially in the following order. We
first solve the interpolation region with a diffusion region specified
as a boundary condition.

Cl lw
s
l = dl − Cld w̃

s
d , (16)

where w̃s
d is the previous weight of the diffusion region before

updating the anchor positions. Note that the difference between w̃s
d

andws
d is negligible as the weights are continuously updated while a

user modifies the anchor position. To solve the interpolation region,
we set C = αQ + ATA, and d = AT si . Then, we solve the diffusion
region with the interpolation region as a boundary condition:

Cddw
s
d = dd − Cdlw

s
l , (17)

where C = αβM + αQ +ATA and d = AT si + αβMp. Note that we
set p = 0Nv because the diffusion region is only computed in the
region outside of the minimum iso-value spline.
When the spline is initialized for the first time, no skinning

weight is available for distinguishing the regions. Thus, we use the
interpolation-based method with (10) once to identify the regions.
The hybrid method is applied thereafter. In Fig. 10, we compare the
results of the interpolation-based method (a), diffusion flow method
(b), and hybrid method (c).

4.5 Local Computation
As can be observed from Fig. 10 (c), even the hybrid method may
have unnecessarily large areas with small but non-zero weights.
The non-zero weight areas may even spread to the unrelated areas
(e.g. foot) because of the effect of the bi-Laplacian term.

Such areas do not exhibit perceivable deformation due to the cor-
responding controller and thus can be clamped to zero and excluded
from weight computation for computational efficiency. To this end,

Fig. 11. Anchor weight and its applied skinning weight on a bunny model.
Top: The results of the hybrid method of isolines [0.1, 0.5, 0.9]. Bottom: The
results of the diffusion-based method with only one isoline [0.8].

we define a local computing region, as the vertices with the weight
values above a threshold (0.05), with extra number (4) of rings of
neighbor vertices added. The extra neighbors are added to respond
to the possible increase in the local computing region as a user edits
the splines. The local computing region consists of interpolation and
diffusion regions. The remaining region is defined as the zero-clamp
region Vz , in which the vertices are forced to have zero weights.

This distinction allows for local computation to remove the zero-
clamp region from solving for the weights. This local computa-
tion scheme contributes greatly to enabling real-time computation,
which is essential for the plausible visualization skinning weights
while a user manipulates the spline interface.

Introducing the zero-clamp region turns the system into:

*.
,

Cl l Cld Clz
Cdl Cdd Cdz
Czl Czd Czz

+/
-

*..
,

ws
l

ws
d

ws
z

+//
-
=
*.
,

dl
dd
dz

+/
-

(18)

where ws
z denotes the weights for the zero-clamp region. Similarly

to (15), the equation can be solved with the interpolation region
first as:

Cl lw
s
l = dl − Cld w̃

s
d − Clzw

s
z (19)

Then the diffusion region is solved with the interpolation region as
the boundary condition:

Cddw
s
d = dd − Cdlw

s
l − Cdzw

s
z (20)

In the above equations, ws
z is set to zero to enforce zero weight to

the zero-clamp region.
The local computing scheme requires some time to identify the

non-zero weight region, but the overall computation time is signifi-
cantly reduced. In the initial stage, we solve (10) and identify the
local computing region. Figure 10 (d) shows the result of applying
the local computation.

4.6 Decomposition into Anchor Weights
Until now, we have computed the skinning weight given the iso-
value constraints of spline si . Since the spline is determined by a
small number of anchor points, we can decompose the skinning
weight according to the effect of the anchor points, which leads to
increased computational efficiency as will be shown here.
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(a) (b) (c) (d)

Fig. 12. From the left, local computation region identified with the skinning
weight divided into interpolation region (red), diffusion region (green), and
zero-clamp region (black) (a), and its skinning weight (Sec. 4.5) (b). Local
computation region identified with the anchor weight divided into each re-
gion with boundary region (blue) added (c), and its skinning weight (Sec. 4.6)
(d).

For the interpolation-based method, from (10) and si = Bci , we
can relate ws and ci as

ws = Kci , (21)
(αQ + ATA)K = AT B, (22)

where each column of the K (∈ RNv×Na ) matrix represents the
influence of the anchor point on the skinning weight of every vertex.
Thus, the matrix K will be termed anchor weight matrix. Note that
K remains constant if the anchor point positions do not change.
Therefore, if only the iso-value of an anchor is changed, ws can
be computed simply by multiplying the pre-computed matrix K
with the new ci instead of solving the linear system (10). 2 If an
anchor position is manipulated, the anchor weight matrix should
be updated by solving (22).

It can be shown straightforwardly that (21) holds for the diffusion
method if K is defined to satisfy:

(αβM + αQ + ATA)K = AT B + αβMP, (23)

where P(∈ RNv×Na ) is a matrix with every column being the p
vector. Here, pj = 1/Na for the diffusion flow method with a single
spline, and p = 0Nv for the hybrid method with multiple splines.
Figure 11 shows the anchor weights and the resulting skinning

weights with the hybrid method (top) and diffusion-based method
(bottom). Naturally, the anchor weight is the highest for the vertex
closest to the anchor point and diminishes with the distance.

Local Computation for Anchor Weight. When a user moves the
position of an anchor point, only the vertices with a non-zero anchor
weight corresponding to the anchor point are affected. Therefore,
we can further reduce the local computing region introduced in
Sec. 4.5 by using the anchor weight. In our experiment, we set the
local computing region as the vertices of which the absolute value
of the selected anchor weight is above a threshold (0.05), with an
extra number of rings (4) of neighbor vertices added. (Due to the bi-
Laplacian operator, the vertices influenced by an anchor may have
negative anchor weights.) We divide the local computing region
into a interpolation region Vl , a diffusion region Vd , and a zero-
clamp region Vz and set non-local computing region as a boundary
region Vb . We then compute the equation (18) with the boundary

2However, the anchor weight of the minimum iso-value must be computed again
because the zero-clamp region needs to be updated according to the iso-value.

Fig. 13. Top: from the left, anchor weight matrix K, difference matrix D, and
gradient weight matrix G for a selected anchor (cyan). For the difference
and gradient weight matrices, negative values are visualized with blue color.
For the gradient matrix, values are scaled 10 times for clear visualization.
Middle: different skinning weights obtained using gradient coefficient set to
0 (left), 2 (middle), −2 (right) for the anchor colored cyan. Additional isolines
are visualized to emphasize the change. Bottom: corresponding deformation
applied on normal direction.

region Vb as boundary constraint. Figure 12 shows the local regions
computed by the skinning weight and by the anchor weight, as well
as and the resulting skinning weight distributions. Despite a much
reduced local computing region that enables a shorter computing
time, the method using anchor weights produces similar results as
the one that uses the skinning weights.

4.7 Gradient Control
The methods introduced so far allow for solving skinning weights
that smoothly interpolate the spline constraints. In these methods,
the interpolation characteristics are determined by the operators
and their modification is not possible. However, fine control of the
weight distribution is often necessary. For example, with two given
splines, a user maywant the weights to change only slightly near the
splines but change sharply in the middle of the splines. This could
be achieved by placing additional splines of new iso-values between
the two splines, but this increases the number of user parameters
considerably and is inconvenient. A better approach would be to
allow users to control the slope of the weight distribution across
the spline, which is similar to the tangent editing function of spline
curve editing. To this end, we develop a method to control the
difference between the computed skinning weight ws and the iso-
value ci of the anchors. The method is achieved by the following
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equations:

wд = Gcд ,
G = K ◦ D,

D = 1Nv c
iT −Ws ,

(24)

where G(∈ RNv×Na ) is a matrix where each column is a gradient
weight vector for each anchor point (hence termed gradient anchor
weight matrix) and cд is the coefficient vector that manipulates
the slope for each anchor. If cдk > 0, the slope around the k-th
anchor becomes flatter, and if cдk < 0, the slope gets steeper. The
matrix D(∈ RNv×Na ) encodes the difference between the iso-value
ci of the anchor and skinning weight ws in each column, where
1Nv is a vector filled with 1, and Ws (∈ RNv×Na ) is a matrix that
juxtaposes the Na copy of the weight vector ws . The operator ◦
performs component-wise multiplication. For a matrix K, we use
the anchor weight matrix (21), with slight modification that clamps
negative and small positive values to zero. The final skinning weight
is computed by adding a gradient skinning weight on the original
skinning weight:

w = ws +wд . (25)
Figure 13 visualizes the value of each matrix K,D,G, as well as the
effect of gradient control on the skinning weight.

5 SPLINE EDITING AND FITTING
A user can dynamically build splines from scratch by picking anchor
positions on the mesh through a GUI, as shown in the accompanying
video. Splines can also be built by extracting isolines from the given
skinning weight. Once built, our system supports anchor editing
operations, such as repositioning, deletion, insertion, splitting, and
merging. During the editing process, our system performs local
computations for real-time user interactions.

5.1 Spline Fitting from Given Weight
If skinning weights are specified on mesh surface, generated by a
paintbrush interface, an automatic skinning algorithm, or a spline
interface, our system can extract isoline for a selected iso-value,
and then fit a spline to the isoline. Finally anchor coefficient opti-
mization are performed to minimize the difference between user
given weights. A user can manipulate this newly generated spline to
modify the existing skinning weight. The overview of spline fitting
is illustrated in Fig. 14.

Fig. 14. Overview of spline fitting.

5.1.1 Isoline Generation. We will represent an isoline as a se-
quence of points on the edge of a mesh, i.e.,Op = {o0, o1, ..., oNo−1}.
Let oi denote a vector of iso-values for isolines. The position of iso-
line points can be identified by linear interpolation between the

Fig. 15. Ogre model. Top: Automatically generated skinning weight using
BBW and extracted isolines of iso-values [0.1, 0.9]. Middle: Spline fitted to
isoline and computed skinning weight. Bottom: The skinning weight after
gradient coefficient optimization.

vertices of each edge opk = lk0xk0 + (1 − lk0 )xk1 , with the interpola-
tion weight lkj (j = 0, 1) satisfying oik = lk0w (xk0 ) + (1− lk0 )w (xk1 ).
We search through every edge to find isoline points and sort them
by the adjacency.

5.1.2 Spline Fitting. The spline fitting method should ideally be
able to determine the optimal number of anchor points and their
positions, but it may require heavy computation for a real-time
applications. Since real-time interactivity is critical in our method,
we take a more simplified approach. Specifically, we set the number
of anchor points Na to be proportional to the number of isoline
points No and the magnitude of curvature ocm of the isoline. The
magnitude of the curvature ocm is approximated as

ocm =

No−1∑
k=1

( opk − o
p
k−1

∥opk − o
p
k−1∥

·
opk − o

p
k+1

∥opk − o
p
k+1∥

+ 1
)
. (26)

Empirically, we set the optimal number of anchor point as Na =

⌊
No
15 ⌋ + ⌊o

cm⌋ + 3.
To compute anchor point positions, we aim for the spline points to

coincide with the isoline points, Sp ≈ Op . Let uo = uo0 ,u
o
1 , ...,u

o
No−1

(No = Ns ) denote the parameter values for spline points Sp . We set
the spline parameter value uok for spk to its arc length divided by the
total length of isoline:

uok =

∑k−1
t=0 ∥o

p
t+1 − o

p
t ∥∑No−1

t=0 ∥o
p
t+1 − o

p
t ∥

(27)

Then we build the basis function B(uo ) based on the parameter
value uo .

If we simplify the relation between the spline points and the an-
chor points to be linear, like a regular spline in Euclidean space, iso-
line points can be represented with linear equation: Op = B(uo )Cp .

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:10 • Bang, S. and Lee, S.-H.

Fig. 16. Left: Skinning weight for the head bone, defined by two splines
of iso-values [0.05, 0.9] with weight freezing turned on. Middle: Skinning
weight for the neck bone, defined with two splines of iso-values [0.05, 0.9].
Right: Resulting weight for the neck after subtracting the fixed weight due
to the head bone.

Fig. 17. Snail model in a rest pose (a). Deformation result with BBW (b) and
BBW with 13 additional point controllers around shell boundary (c). Our
result (d).

We can compute anchor points as Cp = B+ (uo )Op , where B+ is a
pseudo inverse of the basis matrix. However, this does not guarantee
that the anchor points are on the surface. Instead, we regard Cp as
the weighted (B+) average of Op , and once again we use (3) with
B+ as the weights and Op as the anchor points to compute Cp . For
an isoline with an open loop, we constrain the first and last anchor
points to coincide with isoline points at both ends. Finally, we use
the Phong projection as a post-process to project the anchor points
on the surface. This approximation does not guarantee that the fit-
ted spline matches the target isoline exactly, but it gives a satisfying
performance in terms of computation time and accuracy. Figure 15
show some results of splines fitted to the isolines of automatically
generated skinning weights.

5.2 Anchor Gradient Coefficient Optimization
Since spline fitting in Sec. 5.1.2 is performed only on isolines, the
weight distribution made by the fitted spline may not exactly be
the same as the input skinning weights wu , which may have been
obtained by manual painting or by automatic skinning algorithms.
In particular, the in-between region where the spline is not specified
will show different skinning weight results. To reduce the discrep-
ancy, we perform anchor gradient coefficient optimization. We have
introduced the gradient control, which adds a gradient skinning
weight wд on top of skinning weight ws . We find the optimal gra-
dient anchor coefficient cд to minimize the difference by using the
equation:

cд = G+ (wu −ws ), (28)
Where G+ is the pseudo inverse of the gradient anchor weight ma-
trix G in (24). Figure 15 shows the fitting results when only the
spline fitting is applied and when the gradient optimization is addi-
tionally performed. The results show that the gradient optimization
significantly reduces the gap of the computed weight from the input
weight.

Fig. 18. Cactus model. Skinning weight and its corresponding deformation
with different shapes of splines with the same iso-values [0.1, 1.0].

(a) (b) (c) (d) (e) (f) (g)

Fig. 19. From the left, a seahorse model with the cage-based deformation (a).
Initial weights obtained by BBW and a resulting deformation (b-d). Weights
modified with the spline interface and the corresponding deformation (e-f).

5.3 Anchor Editing
A user modifies the configuration of the spline by editing the an-
chors. We provide a set of tools that can intuitively edit the anchors:

(1) Anchor Positioning allows the user to change the position
of the anchor point. As the anchors are repositioned, the
skinning weights are recomputed.

(2) Anchor Deletion reduces the number of anchors. We delete
the entire closed-loop spline if its number of anchors becomes
less than 4.

(3) Anchor Insertion adds a new anchor point to the user-
selected position. The gradient coefficient for the anchor is
set to the average of the two adjacent anchors.

(4) Anchor Splitting divides an open-loop spline into two or
change the topology of a closed loop spline into an open loop.

(5) Anchor Merging combines two anchor points into one. Us-
ing this operation, two open-loop splines can be merged into
one, or an open-loop spline can be changed to a close-loop
spline. The anchor gradient coefficient is set to the average
of the two merged anchors.

5.4 Weight Freezing
So far, we have focused on the skinning weights for one bone. Since
the total sum of weights over the bones must be one for every vertex,
the weight modification for a bone necessitates the adjustment of the
weights for other bones, typically through the normalization. This
may lead to an undesirable consequence where previously edited
weights get changed. This problem is also somewhat unavoidable
for any skinning weight methods, including the paint interface. To
alleviate this problem, we introduce the concept of weight freezing.
If a user is satisfied with the skinning weights of a specific bone
and does not want it to be modified, she can simply fix the skinning
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Fig. 20. Skinning weight on the head, arm, and foot of the Cheburashka
model and its applied deformation generated using an automatic solution
of the BBW (top) and the spline interface (bottom).

Fig. 21. Skinning weight on the mouth, arm, and foot of a Chinchilla model
and its applied deformation generated using an automatic solution of the
heat diffusion weight (top) and the spline interface (bottom).

weights for the bone. Normalization then changes the values of only
the unfixed skinning weights.

Weight freezing can also be beneficial when defining the skinning
weight because the previously fixed weight serve as a constraint. For
example, Fig. 16 (left) shows the fixed skinningweight defined on the
head region. Fig. 16 (middle) shows the skinning weight computed
on the neck region without considering the fixed weight. Due to
the effect of the pre-defined fixed weight on the head region, the
resulting skinning weight on the neck is computed by subtracting
the fixed weight, as can be seen in Fig. 16 (right). Figure 23 also
shows the edited skinning weight leveraging the weight freezing
technique. The skinning weights of the mouth and ear were defined
by fixing the weights from distal to proximal bones. These examples
show that the weight freezing is applied to the joints connecting
two bones, but the method can also be applied to joints with more
bones.

Fig. 22. Skinning weight on the thumb of the hand model and its applied
deformation generated using an automatic solution of the heat diffusion
weight (top) and the spline interface (bottom).

Fig. 23. Skinning weight on the forehead, ear, and mouth of an elephant
model and its applied deformation generated using an automatic solution
of the GVB (top) and the spline interface (bottom).

6 EXPERIMENTS
We implemented our system as a stand-alone application using
NanoGUI as the graphical user interface, and the libIGL library [Ja-
cobson et al. 2016] for most of the geometry processing algorithms,
such as Laplacian matrix construction and BBW. We used open
source code provided by Panozzo et al. [2013] for computing (3). All
of the experiments were performed on a MacBook Pro with 2.8 GHz
Intel Core i5 CPU and 16 GB of memory.

The effectiveness of our interface is well demonstrated in a snail
example (Fig. 1), which is rigged with 6 point controllers. In order
to keep the shell part rigid when deforming the soft body part, ideal
skinning weight should change sharply along the boundary between
the two parts. We could obtain a satisfying result by generating
a spline curve with high iso-value on the boundary of the shell.
Automatic methods that do not consider the desired deformation
properties of surfaces can only obtain smoothly varying deformation
as shown in Fig. 17 (b). To alleviate the problem, one needs to add
significantly more controllers. In the snail example, adding 13 more
controllers (Fig. 17 (c)) could reproduce similar result as ours (Fig.
17 (d)) although the shell part could not be kept perfectly rigid.

Our spline interface system aims to provide a user with a con-
venient tool for editing skinning weights while guaranteeing a
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Fig. 24. A Spiderman model with the automatic skinning method using
GVB and its applied deformation (top). Modification of the skinning weight
using paint interface (middle), and our spline interface (bottom), and their
resulting deformation.

smoothness of skinning weight distribution. For example, in Fig. 18,
we show that significantly different deformations can be obtained
by modifying the skinning weights with our spline interface. Figure
19 (b-d) shows initial weights obtained by an automatic method
using BBW and its resulting deformation. Figure 19 (e-g) shows
a modified skinning weights and the corresponding deformation
by using our spline interface. While the automatic solution gives
plausible results, our method can produce different candidates for
the skinning weight configuration.

We also present some examples of our method generating natural
deformation results, which could not be obtained with existing auto-
matic methods. We show the skinning weights and its deformation
results compared with BBW (Figs. 1 and 20), heat weight (Figs. 21
and 22), and GVB (Fig. 23).

Our spline interface is applicable to any type of rigs, such as bones,
points, and cages, This is because our method does not depend on
the particular features of controllers. We show more results of our
skinning weights and corresponding deformations with the cage
based deformer in Fig. 19, with point handles in Fig. 1, and with
combination of skeleton and point handles in Fig. 25 and 26.

Comparison with Paint-based Interface. We compare our
spline interface with the traditional paint-based interface by con-
ducting a user test where a user fixes the original skinning weight
obtained with an automatic method. Figure 24 (top) shows the initial
skinning weight computed by the GVB method. The excessively
spread out weights of the shoulder and the arm skeleton cause unnat-
ural deformation. A user is asked to fix this initial skinning weight
with a paint interface method and our spline interface method, re-
spectively. Figure 24 (middle) shows the results of modification by
paint interface method, which took 2 minutes and 14 seconds. Figure
24 (bottom) shows the results using the spline interface method,
which took 58 seconds. Even with a shorter operation time, the
spline interface created a much more plausible result. This is an ex-
pected result because moving an anchor point changes the weights

Fig. 25. A turtle model with the automatic skinning method using BBW
and its applied deformation(top). Modification of the skinning weight using
paint interface (middle), and our spline interface (bottom), and their resulting
deformation.

Fig. 26. Seal character used in animation production. Our spline interface
was used to improve the skinning weight.

of suitably wide regions while preserving smoothness of the weights,
which cannot be easily obtained by the paint-based interface. Figure
25 shows another example with a turtle model. A user is asked to fix
an initial skinning weight that excessively spreads out from the head
and leg bones. The paint interface took 3 minutes and 15 seconds,
but ours took only 33 seconds and produced a more plausible result.

Production Rig. We applied our spline interface to a rig used in
the short film production through collaboration with an animation
studio. Figure 26 (left) shows a seal character that consists of 205
controllers and complex rig settings ready to be animated. A rig-
ging artist with 1 year of professional experience spent 10 hours to
complete the skinning task with a paint interface. Figure 26 (middle,
top) shows the skinning weights on the front leg and its applied
deformation. Figure 26 (middle, bottom) shows modified skinning
weights and the deformation by using our spline interface for 30
minutes. The improved quality of the deformation can be better
seen in the accompanying video. Figure 26 (right) shows the final
rendered shot of the posed rig.

Local Computation. Table 2 shows a performance comparison
between global and local computations with the models presented in
this paper. Time for the global computation solely depends on num-
ber of vertices (Nv ), and our local computation technique mostly
depends on the number of anchor points (Na ) and the number of
spline points (Ns ). As can be seen in the table, local computation
schemes achieve significantly better performance than the global
computation, and the local computation using anchor weight is
more efficient than the local computation using skinning weights.
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Fig. 27. Mesh deformation by moving vertices in the normal direction by the amount of scalar field generated with our spline interface.

Fig. 28. Result of color interpolation on centaur, fish, cat, and dog models. Splines are visualized with given colors.

Complexity Time (ms) Time (s)

Model Nv Na Ns Global Local
(skin)

Local
(anchor)

MMDS

Snail 6902 9 91 62 35 26 377
Armadillo 7784 29 216 80 54 24 333
Bunny 3485 22 177 39 37 12 105
Ogre 7846 19 128 71 23 14 364
Horse 3856 11 67 20 10 5 265
Cactus 5261 11 89 47 30 11 111
Seahorse 8559 16 111 104 22 13 395

Cheburashka 6659 14 102 64 15 8 197
Chinchilla 3907 8 45 22 6 4 434
Hand 7707 10 74 78 34 10 285

Elephant 10559 15 111 114 21 12 395
Spiderman 4483 29 176 30 11 8 276
Turtle 8850 12 106 93 43 11 418

Table 2. Computation time of the skinning weights with the global compu-
tation, the local computation on skinning weight (Sec. 4.5), the local com-
putation using anchor weight (Sec. 4.6), and the MMDS pre-computation
time.

7 OTHER APPLICATIONS
Wehave introduced the spline interface for defining skinningweights
so far. In this section, we show other useful applications that are
possible with just small modifications on the algorithm.

7.1 Offset Deformation
Our spline interface can be used to define a scalar field on a surface
that encodes the amount of displacement in the normal direction.
This gives the effect of the displacement map without resorting to
mapping. Figure 27 shows the results of deformation. Scalar fields
are defined to create the biceps bulging in the arm example and to
create humps on the back of a dinosaur. For the face example, the
range limit of [0, 1] is disabled to allow contraction. The spline of
the iso-value of 1 is defined on the mouth region and −1 on the chin
region to create a face with a protruded mouth. We use the color
codes from Fig. 5a for this example with the blue color as negative
values.

7.2 Color Interpolation
We can also define color on a surface by specifying the RGB color
on splines and interpolating the color. Let Wc (∈ RNv×3) denote
the color at every vertex map on a surface, where each column
represents R, G, and B colors, respectively. With the anchor weight
computed by using (22), the surface color can be computed using
the equation:

Wc = KCc , (29)
where Cc (∈ RNa×3) is a matrix of color on the anchors. For this
application, the partition of the unity constraint is not needed. Figure
28 shows the results of color interpolation on various models.

The results are comparable with the ones obtained with the diffu-
sion curve methods [Jeschke et al. 2009]. The difference is that the
diffusion curve method defines curves in texture space whereas our
curves are directly controllable on the mesh surface.

8 DISCUSSION AND FUTURE WORK
In this paper, we introduced a novel spline-based interface for editing
skinning weights for mesh animation. Our interface brings the
benefits of splines, i.e., the ability to create arbitrary curves with
controlled smoothness, to the process of defining skinning weights.
We have shown its effectiveness through a number of examples.

Our work has some limitations that can be interesting topics for
future work. First, the Weighted Average technique [Panozzo et al.
2013], which is used as our basic spline algorithm, requires a one-
time computation of Metric Multidimensional Scaling (MMDS) [Cox
and Cox 2000], which takes a significant amount of time as shown
in the last column of Table 2. While it can be done as a preprocess
to maintain real-time performance, an improved spline method that
does not require preprocessing would increase the utility of the
spline interface.
Second, if a user manipulates control points too quickly, the re-

sulting spline may not be found from our local searching scheme,
described in Sec. 3.2. In this case, the global Phong projection needs
to be applied, but the computation time increases significantly. A
more robust searching scheme will be beneficial for our system.
Third, our spline interface only works on a single component

mesh. However, many rigs in the production consist of multiple
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mesh patches. Fixing the polygonal soup using previous methods
[Jacobson et al. 2013; Xu and Barbič 2014] or building a single enclos-
ing cage using the nested cages [Sacht et al. 2015] can alleviate this
limitation. In addition, if a mesh contains complex parts, e.g., small
holes, a typical picking-based GUI is inefficient as it may require
too many changes of viewing angle to draw a spline. A recently
developed method [Krs et al. 2017] that supports 3D interactive
curve modeling from a single view can alleviate this problem.
Lastly, we have only considered conventional skinning weights

that define deformation configurations to correspond to quasi-static
pose changes. While physical simulation can create secondary dy-
namic deformation of surfaces [Kim et al. 2017], the editing of their
deformation characteristics is mostly possible through cumbersome
operations, such as changing material parameters. Developing an
intuitive tool for editing the global and local characteristics of dy-
namic deformation remains an important future research problem,
and the spline interface may be further improved to contribute to
this direction.
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