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Estimating Garment Patterns from Static Scan Data

Seungbae Bang,† Maria Korosteleva‡ and Sung-Hee Lee§

Korea Advanced Institute of Science and Technology (KAIST), Korea

Figure 1: Given a 3D scan mesh of a clothed person as input, our method fits a body template with predefined boundaries and seam curves
to the input to obtain boundaries and seam curves of each garment. Then the mesh is segmented into pieces, which are flattened and placed
to be ready for simulation.

Abstract
The acquisition of highly detailed static 3D scan data for people in clothing is becoming widely available. Since 3D scan data is
given as a single mesh without semantic separation, in order to animate the data, it is necessary to model shape and deformation
behavior of individual body and garment parts. This paper presents a new method for generating simulation-ready garment
models from 3D static scan data of clothed humans. A key contribution of our method is a novel approach to segmenting
garments by finding optimal boundaries between the skin and garment. Our boundary-based garment segmentation method
allows for stable and smooth separation of garments by using an implicit representation of the boundary and its optimization
strategy. In addition, we present a novel framework to construct a 2D pattern from the segmented garment and place it around
the body for a draping simulation. The effectiveness of our method is validated by generating garment patterns for a number of
scan data.

CCS Concepts
• Computing methodologies → Shape modeling; Parametric curve and surface models;

1. Introduction

Rapidly advancing 3D scanning techniques allow for acquiring an
accurate, static 3D shape of a user with ease. In general, the 3D
scan data is given as a single mesh showing only the visible part

† jjapagati@gmail.com
‡ mariako@kaist.ac.kr
§ sunghee.lee@kaist.ac.kr

of the surfaces of the subject: the scan data is lacking in division
of different parts, such as skin and clothes, let alone semantic la-
belling of these parts. This simple 3D model is still useful for 3D
printing or populating static virtual scenes, but must be converted
to an animatable form to be used in wider applications, such as
movies and computer games. For this, one needs to estimate and
rig the body shape of the subject including occluded parts of the
body, and reconstruct individual parts of the worn garment.

This remains as a challenging task, and many researchers have
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approached this problem from a number of perspectives. In this
paper, we present a novel method to segment garment parts from
input 3D scan data of triangulated mesh and obtain a body model
with a simulatable garment by constructing the 2D pattern for each
garment part.

A popular method for segmenting a garment part from a 3D scan
or image data is to use graph-based (e.g., Markov Random Field)
segmentation approach, in which the label of each node is deter-
mined individually based on its own priors and the relation with its
neighbors. As a per-node classification approach, it often results in
garment segmentation that contains miss-classified nodes inside or
on the boundary of the garment. Recent deep learning-based pars-
ing methods achieve greatly improved accuracy but are not free
from this limitation.

To overcome this limitation, we developed a novel approach for
the garment segmentation. Instead of the per-node classification,
we sought to explicitly find the boundaries of garment parts. This
boundary-based segmentation scheme can prevent artifacts such as
holes and jagged boundaries in the garment segmentation. How-
ever, it is highly complex to explicitly define controllable curves on
the surface. Instead, inspired by [SC18b], we represent the curve
with an implicit function and developed a novel method to update
the implicit function to drive the curve towards the boundary.

In general, the garment modeling process involves making 2D
patterns, which are then stitched and simulated to create a 3D
garment model. To estimate the 2D pattern for a given 3D gar-
ment model, existing approaches uses only a small number of pat-
tern templates that are parameterized to adjust the overall shape
to match the input 3D shape. Another approach inputs user-drawn
seam lines over the 3D surface, then divides the 3D garment mesh
into pieces and flattens them to make 2D patterns.

In this paper, we present a framework to create 2D patterns for
the garments and place them in appropriate locations around the
body for simulation. Regarding the creation of 2D patterns, we take
the approach of cutting a 3D garment into pieces along some esti-
mated seam lines and flatten the sub-divided pieces. To this end,
we developed a stable method to estimate seam lines. Compared
with previous work, our framework obtains 2D patterns that are not
restricted by templates, without user intervention.

Our system requires the input scan mesh to be 2-manifold possi-
bly with boundaries and free from topological merging with other
parts. Other than this requirement, our system is robust to noisy
input data (e.g., the head in Fig. 18(j)), complex color patterns in
cloth (e.g., dot pattern in Fig. 18(f)), or even with additional ob-
jects (e.g., the clutch bag in Fig. 18(a)). Note that various types of
garments (e.g., pants or skirts) are automatically computed to their
corresponding pattern shapes without manual specification of their
types from the user. We validate the effectiveness of the proposed
method by constructing simulatable garment models from a num-
ber of scan data obtained from public repositories.

2. Related Work

There has been a wide variety of studies on modeling and simu-
lating cloth and garments in computer graphics research. Among

them, our discussion on previous studies focuses on methods for
garment segmentation and modeling that are closely related to our
research.

2.1. Garment segmentation on 3D human scans

Segmentation is one of the critical components of the garment
model estimation. A number of studies, e.g., [GLL∗18, LGSL19,
RLH∗19], showcase notable progress in cloth segmentation (also
called “human parsing”) in the image domain. On the other hand,
the task of cloth segmentation in 3D lacks solutions of a simi-
lar quality level, with only a few studies exploring the problem.
The work of [SGDA∗10] determines a non-rigidly deforming sur-
face region as a garment part. The work of [PMPHB17,ZPBPM17]
performs direct vertex-level segmentation using texture maps. This
method defines weak priors on the surface that are likely to belong
to a certain class, and then solves the Markov Random Field (MRF)
to perform the segmentation. The work of [BTTPM19] builds upon
this approach by additionally incorporating image-based seman-
tic segmentation [GLL∗18] into the pipeline. The techniques men-
tioned above show overall robust segmentation in their applicable
scopes; however, since they use independent per-vertex prediction,
segmentation is oftentimes noisy, especially on the boundaries be-
tween classes. In our work, we shift focus to accurately separating
the areas belonging to different classes by incorporating boundary
priors alongside the color-based segmentation.

2.2. Estimation of Garment Models

Research on estimating garment models is very diverse reflect-
ing the complexity of the task. Researchers have explored various
input modalities and representations for garment models. Model-
ing garment shape in terms of displacement from the body sur-
face [NH14,YFHWW18,SOC19] is simple and intuitive but cannot
represent the complex shape of garments. Sizer [TBTPM20] uses
neural networks to deform pre-defined garment templates. Deep
Fashion3D [ZCJ∗20] builds a large scale data set of various gar-
ments by deforming adaptive templates. Chen et al. [CZL∗15] rep-
resented a garment as a hierarchy of 3D components (e.g. torso,
sleeve, and collar) and collected a library of various garment com-
ponents. A garment model is then created from the input RGBD
by matching the components from the database to the input and
constructing the hierarchy with the matched components.

Another way to represent a garment is with 2D pattern tem-
plates with a small number of parameters to control the garment
size which can be easily modified and simulated to make 3D gar-
ment models. Some reconstruction methods [JHK15, YPA∗18] use
libraries of such parametrized 2D patterns to restore garment mod-
els from images. Jeong et al. [JHK15] estimates template param-
eters from key landmarks detected on the input image. A recent
study [XYS∗19] improved landmark prediction and parts segmen-
tation by using deep neural networks. Obtained information acts
as a target for deforming the 3D garment template and recovering
a texture map with a predefined 2D pattern template as a refer-
ence. Yang et al. [YPA∗18] focuses on images of people wearing
garments and optimizes 2D pattern parameters so that the simu-
lated garment matches the corresponding garment silhouette from
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the input image. The method of [VSGC20] learns data-driven wrin-
kle deformation as a function of 2D pattern parameters. 2D pattern
templates play an important role in [WCPM18], which presents the
concept of a learned shared latent shape, a latent vector that unifies
2D sketches, 3D geometries, body shape parameters, material prop-
erties, and 2D pattern template parameters of the same garment.
This latent representation allows going from one explicit represen-
tation to another but needs to be trained separately for each garment
template.

Our approach is close to the line of work that obtains a gar-
ment 2D pattern by flattening a 3D garment surface. The process
usually involves defining the cut lines (seams, darts, etc.) on the
3D surface and flattening the resulting 3D patches. To find the
cut lines, the majority of work relies on the user to define them
on the 3D surface [KK00, CKI∗06, WWY03, WWY05, DJW∗06,
JHK06, WLL∗09, TB13b, TB13a, KJLH10, LZB∗18]. Other ap-
proaches [BSBC12,MWJ12] have a 3D garment geometry as a sim-
ulation result of an input 2D pattern, and refer to this initial pattern
to identify appropriate cuts on the target surface. In contrast, our
method relies on seam line priors defined on the parametric body
model that generalize across clothing types, e.g., skirts and pants.
Our approach does not require user intervention or a specific refer-
ence 2D pattern, and thus has the potential for better generalization
properties.

3. System Overview

The input to our method is static scan data of a clothed person with
a triangulated mesh and an associated texture map. We assume that
the subject’s clothing is either two pieces of upper and lower gar-
ments or just one piece. Our method automatically determines the
number of garment pieces. The input mesh is assumed not to have
a topological merging between parts (e.g., the hand on the waist
without boundary)†. Our method works for non-water-tight mesh
with many holes, as can be seen in Fig.18(e, j).

Figure 1 describes an overview of our algorithm. First, a bare
body template model is fitted to the input scan data and then pre-
defined boundary curves and labeled regions are projected from the
body model to the scan data. By using the color information of pro-
jected regions, these initially projected curves are optimized to find
the boundaries between parts. Boundary optimization is performed
in the order of (upper garment↔skin), (lower garment↔shoes),
and (upper garment↔lower garment), from which garments are
separated from the mesh. After that, the predefined seam curves are
projected from the body model to the garment to segment into indi-
vidual pieces for the garment pattern. Then, each segmented piece
of garment is rigidly rigged to the nearest body joint and trans-
formed to the unposed configuration. Finally, 2D parametrization
is applied to flatten each segmented piece, which is subsequently
aligned to its corresponding body part to be easily stitched by cloth
simulators. Each step of our method is detailed in the following
section.

† Input data with topological merging requires pre-processing to sepa-
rate the merged parts. For example, we manually separated the hands in
Fig.18(d) from the head and waist as they were merged in the original scan
data.

Figure 2: From left to right, input scan data, SMPL model with
fitted shape parameter, SMPL model with fitted shape and pose pa-
rameters, fully fitted mesh purposed for feature points projection
(Sec. 5.1.2).

4. Human Body Shape and Pose Estimation

The first step of our method is to estimate the naked body shape
and pose under clothing from an input 3D scan. We adopt the
SMPL [LMR∗15] statistical body model as a representation of
the bare body. The SMPL is a skinned vertex-based model V̄smpl

with a controllable shape parameter~β (∈ R10) and pose parameter
~θ (∈ R75). To estimate pose and shape parameters that would suf-
ficiently match the input, following [ZPBPM17, YFHWW16], we
minimize an objective function that pushes the skin vertices close
to, but inside the scan mesh.

The success of an optimization-based approach relies heavily
on the initial guess of parameters, and setting a default pose,
e.g., A-pose, as the initial guess often leads to only local optima.
An effective approach to estimating 3D human pose is to em-
ploy an image-based estimator, as shown in the recent work of
[RRC∗16,BKL∗16,PZZD18,KBJM18,XCZ∗18]. Similarly, to en-
sure that our system is applicable to various poses, we take an addi-
tional step of pose initialization that relies on an image-based pose
estimator. Specifically, we choose OpenPose [CHS∗19], which al-
lows for 3D pose estimation from multi-view images of a human
subject.

Figure 2 shows the result of the SMPL model fitting on scan data.
Appendix A presents the detailed procedure of our pose and shape
estimation.

5. Garment and Skin Segmentation

After obtaining a fitted SMPL body model, our method performs a
clean segmentation between parts among garment pieces and skin
regions from the input scan data.

5.1. Boundary Curve Optimization

Our strategy for the segmentation is to find optimal boundaries
among clothing pieces and skin. We aim to find a total of three
boundaries that divide between upper clothes and skin B(U |S);
lower clothes and shoes (or skin) B(L|S); and upper and lower
clothes B(U |L). We achieve this by first projecting predefined
boundary curves on our body model to the input scan mesh, and
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Figure 3: Flowchart of boundary curve optimization.

Figure 4: From the left, pre-defined labeled region points, pre-
defined spline and sign points for separating upper clothes and
skin B(U |S), lower clothes and skin B(L|S), and upper and lower
clothes B(U |L). Blue and magenta points indicate positive and neg-
ative sign points, respectively.

then defining an implicit function on the mesh to represent the
boundaries. We then adjust the implicit function by adding dis-
placement function that is computed using color information on
the input mesh iteratively until convergence (Fig. 3).

5.1.1. Predefined Feature Points on the SMPL Model

For boundary optimization, it is important to have a good initial
boundary curve and displacement function. Since we fit the shape
and pose of the SMPL body model, we pre-define the information
necessary to define the boundary curve and displacement function
on the SMPL model. To this end, a set of feature points is defined on
the SMPL model (Fig. 4). The feature points include spline points,
sign points, and labeled region points. Spline points define the ini-
tial boundary curves. Sign points are given either positive or neg-
ative value, which are later used to convert an explicit boundary
curve to an implicit function that has positive and negative values
across the boundary. Labeled region points are assigned with one of
four labels, l(u) = {lskin, lupper, llower, l f oot}, and are used to collect
color information for those regions. These points are defined only
once for the average SMPL model and are used for every input scan
mesh as the shape and pose parameters of the SMPL model adjust
the locations of the points.

The spline and sign point sets are defined for each of the three
boundaries to be optimized. For the boundary between the upper
clothes and skin B(U |S), we define 3 closed splines around the neck
and each wrist. Three sign points are defined on the nose and the tip
of hands with a positive value, and two additional sign points with a
negative value are defined on the front and back sides of the chest.
For the boundary between the lower clothes and skin B(L|S), we
define two closed splines around the ankle. Sign points are defined

Figure 5: Projected spline and sign points for B(U |S) on scan
data. The second and third columns show biharmonic function and
signed geodesic function on the initial configuration of boundary
curves. The fourth and fifth columns show the respective functions
with optimized configuration of boundary curves. Note that the
curve initially projected on the wrist are placed on the boundary
of sleeves after optimization.

with four points with a positive value on each tip of the toe and
bottom of the foot. For the boundary between the upper and lower
clothes B(U |L), we define a spline around the waist. For feature
points, we define two points with a positive value on the front and
back of the chest.

5.1.2. Feature Point Projection

To stably project pre-defined feature points on the SMPL model to
scan data, we take an additional step to adjust the vertices of the
fitted SMPL model to fully match the input scan data by using the
nonrigid ICP method, for which the open source code of [Man20]
is used. As this fully fitted mesh could involve excessive distortion
to match garment parts, it only serves to stably deliver the feature
points to the scan data and is not used as body mesh. Figure 2 (right)
shows the result of a fully fitted SMPL model. Projecting the fea-
ture points to the scan data can now be simply done by finding the
closest points on the scan surface from the fully fitted SMPL body
model. For spline projection, we found projecting spline points di-
rectly could lead to noisy and jagged curves. We instead project the
anchor points of the spline, and compute the spline on the scan sur-
face with a weighted average on surface technique [PBDSH13] on
the scan surface. In Fig. 7 (left), we show the projected spline and
sign points on the input mesh.

This projection scheme is mostly stable, but there can be ill-
projected points, which can lead to an undesirable initial spline and
implicit function. Therefore, we find these ill-projected points with
some simple heuristics and discard them. Removing a portion of
the feature points is tolerated by our method. Appendix B details
how we determine ill-projected points.

5.1.3. Implicit Function Computation

Performing curve optimization on a discrete surface domain is
cumbersome, especially when a curve is constrained on a sur-
face. Inspired by the idea of the variational surface cutting method
[SC18b], instead of explicitly representing a curve on a surface,
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Figure 6: From left to right, smoothed color on scan data, pro-
jected labeled region points, average color for each region, and
displacement function.

which is highly error-prone, we transform it to a smooth implicit
function on a surface, in which a certain value of isoline represents
a curve. A smooth implicit function on the surface makes curve
optimization much easier.

Biharmonic Function With the projected spline and sign points,
we solve a biharmonic function on the scan mesh with a con-
straint of zero value on the spline points and pre-assigned posi-
tive/negative values on the sign points. This can be expressed as

φb = argmin
u

∫
Ω

‖∆u‖2dA

s.t. u|C = 0 , u|p = c,
(1)

where C denotes a spline point on the surface, p is a sign point, and
c is its pre-assigned value. Constraints on a curve can be expressed
in terms of the barycentric coordinates. The resulting biharmonic
function is a smooth function with zero values on the boundary
spline points with different signs across the boundary. The zero
value of isoline on this scalar function φb implicitly represents the
spline curve.

However, using the biharmonic function directly as our implicit
function for curve optimization can be problematic. The gradient
of this biharmonic function can be different depending on the rela-
tive configuration between the spline and sign points. As we add a
displacement function to our implicit function, this could lead to a
biased configuration of the curve, e.g., an area with a steeper gra-
dient can have less movement then an area with a flatter gradient,
even with the same displacement function value. Therefore, we use
the signed geodesic distance function φi for the boundary optimiza-
tion.

Signed Geodesic Distance Function By using the biharmonic
function and its extracted curve with a zero value of isoline, we
compute geodesic distance from isoline using the fast marching
method [KS98]. As this geodesic distance does not distinguish the
sign between regions across the boundary, we determine the sign
from the biharmonic function. By definition, the magnitude of the
gradient of the signed geodesic distance φi is constant, ||∇φi||= 1.

Because the signed geodesic distance has a constant gradient from
the isoline, it is much more stable than the biharmonic function
when numerical optimization is performed. Figure 7 compares the
biharmonic function and signed geodesic function. Note that the
signed geodesic function has a consistent gradient compared to the
biharmonic function.

Whenever there is an update on the implicit function, we re-
compute the biharmonic function and signed geodesic distance
function.

5.1.4. Displacement Function Computation

Ultimately, we want our curve to be placed on the boundary be-
tween each region. To drive the curve towards the true boundary,
we update the implicit function by adding a displacement function
defined on the mesh surface. The displacement function needs to
have zero value on and different signs across the true boundary.

We use the posterior probability function of the Gaussian
Mixture Model (GMM) for our displacement function. We use
CIEL*a*b* color space as it is good at distinguishing perceptu-
ally different colors. Before converting to CIEL*a*b* space, we
perform a slight color smoothing in RGB space so that it can have
a similar value around its local neighbour.

With projected labeled region points, we fit GMM on the color of
these points. As we focus on the boundary between two regions for
each step, the GMM is fit with two adjacent labeled region points.
For example, to compute the boundary between the skin and up-
per boundary B(U |S), we fit the GMM with two labeled regions:
lskin and lupper. Then, the fitted GMM allows for calculating the
posterior probability of any point on the surface u being classified
between two labeled regions. We re-scale these probability values
[0,1] to the range [−1,1] and use this as the displacement func-
tion. Given CIEL*a*b* color c(u) on the vertex, the displacement
function is defined as:

φd(u) = 2(Pr(l(u) = lskin|c(u))−0.5) (2)

For the boundary B(U |L), this will be φd(u) = 2(p(l(u) =
l f oot |c(u))− 0.5). For B(L|S), the lower clothes can border either
the shoe or leg skin. So we fit the GMM with three labeled regions
of l f oot , lskin and llower. We use the posterior probability of being
either l f oot and lskin as the displacement function for B(L|S), i.e.,
φd(u) = 2(Pr(l(u) = l f oot or lskin|c(u))− 0.5). Figure 8 shows an
example of the displacement function computed for the boundary
B(U |L).

The displacement function is added with a small step size (α =
0.01) as follows:

φ̃i+1 = φi +αφd (3)

Length Regularization One may assume that this probability
function could be applied directly to segment each region. How-
ever, this probability function has a high potential of misclassifica-
tion. This was the approach of ClothCap [PMPHB17], which uses
a sequence of data to fix this issue. Our boundary optimization ap-
proach is robust with a noisy probability function. The robustness is
further improved by a length regularization step. For this, we apply
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Figure 7: Boundary optimization is performed in the order of B(U |S), B(L|S), and B(U |L). For each optimization, this figure shows its
initial boundary and implicit function followed by the optimized boundary and implicit function, for 14 subjects.

the backward Euler scheme to update the implicit function similar
to [SC18b].

(I+β∆)φ̄i+1 = φ̃i+1, (4)

where ∆ denotes the Laplacian operator and β is the length regular-
ization intensity parameter (β = 0.05). This will remove noisy local
changes on the curve.

With the updated implicit function φ̄i+1, we re-compute the
signed geodesic distance function φi+1. The implicit function is
iteratively updated until the difference from the previous implicit
function becomes negligible.

5.1.5. Overall Algorithm for Boundary Optimization

Algorithm 1 summarizes the overall procedure for finding the opti-
mal boundary.

Algorithm 1 Boundary Optimization Algorithm.
1: Project features points from SMPL model
2: Compute initial implicit function φ0 and displacement function

φd
3: repeat
4: Add displacement function φ̃i+1
5: Regularize implicit function φ̄i+1
6: Extract isoline & fit spline Ci+1
7: Compute implicit function φi+1
8: until ‖φi+1−φi‖2 < threshold

This same algorithm is applied for each step of finding bound-
aries B(U |S),B(L|S) and B(U |L) in sequence. We first find the opti-
mal boundary curve B(U |S), cut the mesh along the boundary curve
and discard the skin part. With the remaining mesh, we find the op-
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Figure 8: Displacement functions for B(U |S), B(L|S), and B(U |L).

timal boundary curve B(L|S) and discard the foot part. Lastly, we
find the optimal boundary curve B(U |L) then cut the cloth with the
upper and lower part. For a one-piece garment, we skip the last
part. Figure 7 shows the results of the implicit function applied on
each stage applied, and Fig. 8 shows the results of the displacement
function on each stage on 14 subjects. Note that different garment
topologies (e.g., skirts and pants) can be generated by our method
with the same initial boundary template. This is possible because
our implicit function optimization enables topology change, which
contrasts greatly with other approaches based on pattern or garment
templates.

5.2. Handling Gap-Filling Triangles

In some cases, the scan mesh contains spurious triangles to fill the
gap between the body and clothes (e.g., between the bottom of the
skirt and leg). These triangles are typically assigned with meaning-

Figure 9: From the left, displacement function by Eq. (2) and its
resulting boundary, displacement function by Eq. (6) and its result-
ing boundary, and the comparison of segmented garment meshes.

less colors, and they can prevent our method from finding the cor-
rect boundary. To fix this problem, we use the fact that these gap-
filling triangles are oriented more or less orthogonal to the limb.
Thus, when the input data contains such spurious triangles, we em-
ploy an additional displacement function that is determined by the
normal direction of the vertices.

After boundary curve optimization performed with the displace-
ment function in Eq. (2), we first find the best fitting plane on the
boundary curve points. The normal vectors of the fitting plane are
then compared with the vertices in the mesh. The displacement
function has a larger value for a vertex of which normal~nu is closer
to the plane normal ~o, encouraging the boundary curve to pass the
gap-filling triangles. Specifically, we define the displacement func-
tion as follows:

φdn(u) = max(2(|~o ·~nu|−0.5),0). (5)

Note that φdn(u) = 0 for the vertices whose normal is far from ~o,
adding no effect to the displacement function. Boundary optimiza-
tion is then performed once more with the normal displacement
function added as below:

φ̃i+1 = φi +α(φd +φdn). (6)

Figure 9 compares the boundaries obtained before and after apply-
ing Eq. (6) on the skirt data on subjects a,d, and f .

Note that if a reasonable boundary is found before the gap-filling
algorithm, the additional displacement function will not affect the
original boundary position by converging to the solution quickly,
as in the example of subject a.

5.3. Upper-Lower Clothes Segmentation

This step is taken to divide the upper and lower garments. If the
difference between the mean color of the upper and lower body is
small, we assume it is one-piece, skip this step and directly pro-
ceed to seam computation (e.g., subjects a and f ). Otherwise, the
following step is taken.

As the upper clothes often occlude the lower clothes or vice
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Figure 10: Boundary constrained deformation applied to the
lower garment. Initially, the top part of the pants coincides with the
upper garment (left). After deformation, the same part has shrunk
towards the body, naturally occluded by the upper garment (right).

versa, finding only one visible boundary between the two and di-
viding them along the boundary results in an incomplete garment
model for the occluded clothes. Therefore, it is necessary to infer
the boundary of the hidden part of the clothes.

To this end, we first identify the occluded clothes. Our prede-
fined spline for the upper-lower clothes boundary is located on the
waist around the navel. If the optimized spline is located closely
to the initial spline, we determine that the two clothes do not over-
lap. Otherwise, if it is positioned below the initial spline, we de-
termine that the lower clothes are occluded, and vice versa. For
non-occluded clothes, we use the optimized boundary for its seg-
mentation. For occluded cloths, the initial boundary curve is used
for the segmentation.

As the initial boundary curve encloses the outer clothes, we
take an extra step to estimate the geometry of the hidden part of
the occluded clothes. For this, we solve the biharmonic deforma-
tion [JTSZ10] with two constraints: that the segmented boundary
shrinks to the projected positions on the SMPL body and that the
positions corresponding to the optimized boundary keep their po-
sitions. This results in an unchanged visible region while the oc-
cluded region fits the body more tightly. Figure 10 shows the lower
garment mesh before and after the boundary constrained deforma-
tion is applied.

6. Pattern Generation

The pattern serves as a low-dimensional space for creating various
styles of a fabricatable garment. Because variation on the pattern
space guarantees the construction of a reasonable clothes shape,
estimating pattern shapes from 3D scan data is essentially finding
a meaningful representation for the 3D garment model.

Until now, we have segmented each garment piece from scan
data. To estimate a pattern for each garment piece, we first de-
termine seam lines on the garment mesh, separate the mesh into
several sub-pieces, and then flatten the sub-pieces to obtain a pat-
tern. Subsequently, we remesh the pattern for quality triangulation.
Finally, we place each panel of the pattern in 3D space near the
corresponding body part to make it ready for simulation.

Figure 11: Predefined spline and sign points for upper side seam,
shoulder seam, lower side seam, and hip-to-belly seam

6.1. Seam Line Estimation

Our goal is to estimate seam lines to divide a garment mesh into
several pieces, each of which will make a panel of a pattern. Our
method for estimating seam line shares many components with the
boundary optimization method in Sec. 5.1. We pre-define splines
corresponding to seam lines as well as some feature points on the
body model. We project the spline to the scan mesh and convert it to
an implicit function. Length regularization is performed to smooth
the curve and then extract isoline to identify the seam line on the
scan mesh.

6.1.1. Predefined Data on SMPL Model

We assume that our garment model is composed of several sim-
ple components commonly used in the garment industry. Figure 11
shows pre-defined spline and sign points for seam line computation.
The upper clothes are assumed to consist of front, back and sleeve
panels. To divide into each part, splines are pre-defined on the side
of the body for front and back segmentation and on the shoulder
for sleeve segmentation. For the front-back segmentation, feature
points are pre-defined with 13 points on the front of the upper body
with a positive value and 13 points on the back of the lower body
with a negative value. For the shoulder seam segmentation, 2 points
are defined with a positive value on the front and back of the chest.
Green dots on the spline denote the anchor points.

We assume that the lower clothes are composed of four panels
that divide the clothes from the front-back and left-right. To seg-
ment to each part, splines on the side of the body are pre-defined for
front and back segmentation and from hip to belly to segment the
left and right segmentation. For the side segmentation, sign points
are pre-defined with 11 points on the front of the lower body with
a positive value and paired with 11 points on the back. For the left-
right segmentation, 4 points on left side of body with a positive
value and 4 points on right side of body with a negative value are
defined.

We do not have labeled region points for the seam line segmen-
tation because we do not perform boundary curve optimization.

6.1.2. Seam Line Computation

To compute the seam line, we employ the spline projection tech-
nique introduced in Sec. 5.1.2 and convert the spline into an im-
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Figure 12: Projected seam curve on scan data (left), flattened
pieces from scan data (middle), and re-meshed pattern with Bezier
curve fitting (right). Note that coarsely re-meshed result is shown
for clear visualization. In practice, re-meshing is conducted with
much denser triangulation.

plicit function representation as in Sec. 5.1.3 along with length reg-
ularization. We then extract zero valued isoline as our seam line.

Seam Line Removal We employ the same heuristics in Appendix
B to remove ill-projected anchor points. Moreover, unlike boundary
spline curves, we allow the seam curves to be entirely removed if
only a few (less than three in our experiment) anchor points remain.
This enables the automatic removing of the hip-to-belly seam for
skirts (d,g, j) and the shoulder seam for sleeveless shirts (c, f ,h, i)
in Figs. 8 and 18.

Paired Feature Point Projection A notable difference between
seam line computation and garment segmentation is that here, we
enforce that the projected feature points for positive and negative
values exist in pairs: if one of paired feature point is discarded due
to ill projection, we also discard its paired feature point. This is
because, if feature points are not equally assigned, it can lead to the
biased computation of the biharmonic function, which potentially
leads to a undesirable configuration of the seam line.

Shoulder Seam Line Computation We expect the shoulder seam
line to be placed around the armpit, which is sometimes not
achieved in the above methods. To fix this problem, we take extra
care on the shoulder seam line computation. When we compute an
implicit function with the biharmonic function, we constrain zero
values on projected anchor points instead of spline points. Then, we
add extra constraint with the negative value at the boundary of the
arm and the positive value at the boundary of the neck and waist.
This helps our boundary curve to be placed around the armpit.

6.2. Flattening and Remeshing the Pattern

To minimize distortion from the 2D pattern to 3D garment part,
finding 2D parameterization with zero area distortion for each 3D
garment part gives us a reasonable pattern shape. Specifically, we
use [SC18a] with no boundary constraint specified.

We perform remeshing for better triangulation, which is essential
for quality simulation. When a garment piece is segmented along
the seam line, as described in Sec. 6.1, we save the intersecting
point between the seam line and boundary curve of the garment.

Figure 13: Extracted and segmented upper and lower garments
from scan data are rigidly attached to the estimated SMPL model
(left). Unposing the SMPL model transforms each segmented piece
to its rest configuration (middle). Flattened, remeshed pattern is
aligned in correspondence with 3D configuration of body (right).

Then each pattern shape can be represented with these points P
and edges E. From the pattern shape, we fit each edge of E with
a Bezier curve. Then, we resample the points along the edge, and
perform Delaunay triangulation using the TRIANGLE of [She96].
As a result, a pattern is obtained with a clean and smooth boundary
and evenly distributed triangles inside. Figure 12 shows the result
of the procedure to create flattened pieces from the projected seam
curve, and subsequently to obtain remeshed pattern pieces. Note
the jagged boundaries and ill-shaped triangles are resolved after
remeshing.

6.3. Alignment of the Pattern

For the draping simulation, it is better for the body model to take
a standard pose with arms and legs stretched and spread nicely to
prevent tangling in the cloth simulation. In our case, this is simply
achieved by unposing the SMPL body model, i.e., setting the pose
parameter to zero. In addition, pattern panels must be placed near
corresponding body parts, so that they are ready to be stitched with
other panels and draped with the simulation. Figure 13 shows a
result of an unposed and aligned pattern on a body model.

To determine the placement of the pattern, we use the spatial
relation between 3D garment parts and their corresponding body
parts. Specifically, each segmented garment part is rigidly bound to
the skeleton of the SMPL model: the trunk parts and the sleeves are
bound to the chest and shoulder joints, respectively, and the lower
garment parts are bound to the hip joint. We then unpose the SMPL
body model to its rest pose along with the bound garment parts.
This results in a rest pose configuration of garment parts.

Since flattened garment pieces are obtained with parametriza-
tion, we have a correspondence between the 3D garment part and
2D pattern shape. We can also easily find the correspondence be-
tween patterns before and after re-meshing. With these consecutive
correspondence relations, re-meshed pattern panels are aligned to
the 3D rest pose configuration of its corresponding garment part.
Specifically, we rotate the pattern panels about the frontal axis to
align with their corresponding garment parts and then apply a short
distance along the frontal axis between front and back patterns so
that they do not collide with the body. The garment is finally ready
to be simulated.
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Figure 14: Segmentation results with an MRF-based method (mid-
dle) and ours (right).

7. Results

Our system is implemented in C++ and MATLAB. We used li-
bIGL [JP∗18] and GPTOOLBOX [J∗18] as geometry processing
libraries. The major bottleneck in the execution of our system is the
boundary optimization step, of which computational performance
is reported in Table 7. Note that our code is no optimized for per-
formance. All the experiments were performed on a MacBook Pro
with a 2.4 GHz Quad-Core Intel Core i5 CPU and 16GB of mem-
ory.

As our final output is pattern aligned on the body with a rest pose,
we can import the result directly into commercial cloth simulation
software. CLO software was used to run cloth simulation with our
estimated pattern shape. Seam stitching information was manually
set between garment panels. Physical parameters, such as stretch,
bending, density, and friction coefficients, were also set manually
to replicate the shape of the input scan data.

For testing, we collected scan data of 15 subjects from publicly
available repositories such as Sketchfab and Turbosquid (subjects
a,b,c,d, f ,g,h, i,k, l,m,n,r,u, and v), and obtained data by scan-
ning 2 subjects with a multi-camera 3D scanner (subjects e and j).
In addition, we tested our method on an existing dataset from MGN
(subjects o, p,q,s, and t). Figure 18 shows the results of our method
from input scan data to final the draped simulation, as well as each
intermediate step of the fitted body model, segmented garment, es-
timated 2D pattern, aligned and sewed pattern on the rest-shaped
model. Note that various garment styles were successfully captured
and reconstructed.

Comparison with MRF-based Segmentation We compare our
segmentation with the MRF-based method in Fig. 14. Our im-
plementation of MRF-based segmentation followed the procedure
in ClothCap [PMPHB17]. Specifically, we used our displacement
function from Eq. 2 as the data likelihood term, and our pro-
jected label region as the garment prior term. As can be seen in
Fig. 14, the MRF-based method may exhibit mislabeled vertices
inside the garment. In contrast, since our method finds the bound-
ary of segmentation, it is inherently free from the mislabeled in-
ternal vertices. In addition, the implicit representation of the curve
allows our method to generate a smooth boundary independently of

Figure 15: Segmentation results comparison with data from Cloth-
Cap [PMPHB17] and ours.

Figure 16: From the left, input scan data from MGN dataset, ge-
ometric garment deformation with MRF-based segmentation and
image-parsing prior [BTTPM19], and our method with draping
pose with simulation. Purple circles: inexact segmentation. Red cir-
cles: artifact of geometric deformation of garment.

mesh resolution, which cannot be done with a per-vertex labeling
approach such MRF-based segmentation, as demonstrated by the
jagged boundaries of subjects c and h. Figure 15 compares the seg-
mentation results with ClothCap and ours. The results of ClothCap
exhibit jagged boundaries because of the per-vertex labelling, as
highlighted with red circles. In contrast, our results show a smooth
boundary, even with a low resolution of mesh. Note that the Cloth-
Cap method uses a sequence of scan data to increase the robustness
of labelling, while ours uses only single scan data. As shown in
Fig. 16, the work of [BTTPM19] greatly improved the quality of
the MRF-based segmentation by combining with semantic image
segmentation. However, it still shows a few incomplete segmen-
tations in the published dataset. For example, subjects p and q in
Fig. 16 (purple circles) show the segmented boundary between the
knee and pants placed slightly lower than the actual boundary. Ge-
ometric deformation of a garment may induce artifacts, as shown in
Fig. 16 (red circles), whereas physical simulation of a 2D garment
pattern is less prone to errors.
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time (seconds)

subject # verts
boundary

B(U|S) B(L|S) B(U|L)
a 48000 71.4 84.5 N/A
b 50000 93.3 36.9 32.7
c 7277 11.1 1.6 1.5
d 22531 34.8 53.4 13.8
e 25017 43.5 13.6 19.4
f 13931 29.6 20.8 N/A
g 49956 40.8 109.0 39.1
h 31218 80.2 29.5 6.0
i 17363 36.9 26.9 11.5
j 24974 20.9 37.2 9.3
k 14999 24.2 20.1 13.1
l 37499 76.6 30.6 47.2
m 49483 92.7 42.7 49.3
n 31612 26.4 8.7 9.1

Table 1: Compute time for boundary optimization of each subject.

Figure 17: Failure cases of our method.

Comparison with Displacement-based Geometric Deformation
Figure 16 compares our method with a geometric garment defor-
mation scheme that represents the garment shape as a displacement
from the body mesh and applies linear blend skinning to the gar-
ment vertices with the skinning weights of the associated body ver-
tices as detailed in Sec. 3.1 in [BTTPM19]. Subjects o and q in
Fig. 16 show unnatural garment deformation around the shoulder
and elbow due to this geometric deformation scheme. By contrast,
a physical simulation approach such as ours typically leads to more
natural deformation.

8. Limitations and Future Work

Our method has several limitations that must be overcome with fu-
ture research. First, our method can be applied only to a limited
scope of scan data. It assumes that the subject is wearing rather sim-
ple two-piece or one-piece garments and cannot handle a subject
wearing an additional garment, such as a coat. Subject u in Fig. 17
shows this issue where the subject is wearing a layered upper gar-
ment, and our algorithm distinguishes the inner layer to be a part of
pants, placing a boundary between the outer layer and inner layer of
the upper garment. Another limitation is that our method does not
reconstruct garment parts occluded by hair or other objects. Subject
r in Fig. 17 shows a failure case, where the neck-garment boundary
is misplaced after optimization due to occlusion by hair. In the case
of subject s from the MGN dataset, our method finds a boundary
between hijab and shirts. To deal with such variations in input data,
semantic recognition of body parts and garments will be necessary.

Our boundary optimization method uses a displacement func-
tion that only uses color information. Thus, it cannot distinguish
between upper and lower garments with very similar color, such
as subject t from the MGN dataset. Including geometric informa-
tion in the optimization, such as curvature, is a promising way to
improve the quality of the boundary. Another interesting future re-
search topic is to improve this displacement, possibly by combining
with deep learning approaches, such as semantic parsing.

Lastly, our seam computation step is rather simple compared
with the boundary optimization step, and it may project the seam
curve in a sub-optimal place. Subject u in Fig. 17 shows that the
shoulder seam is projected too far toward the chest. To improve the
quality of the seam computation, we have tested it with distortion
minimization as in [SC18b], but it was not very effective in our
problem domain. Still, it remains as interesting future work to de-
velop an effective optimization framework for seam computation.
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Appendix A: Body Shape and Pose Estimation

Pose Initialization. OpenPose [CHS∗19] is used to estimate the
pose of the input 3D scan. For this, we obtain multi-view images
by rendering the 3D scan input from 7 equally spread directions.
The renderings and the camera parameters are fed to OpenPose,
and the estimated pose is obtained. As a result, we obtain the initial
pose~θop for the following SMPL paramter estimation step.

Model Fitting. To obtain SMPL model parameters~β,~θ that ap-
proximate the body shape under clothing for the input 3D scan, we
perform energy minimization with the following objective:

E(~β,~θ) = E f it(~β,~θ)+λβEβ(
~β)+λθEθ(~θ), (7)
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Figure 19: Conditions to determine ill-projected feature point.

where E f it is a fitting term, and λβEβ and λθEθ are regulariza-
tion terms for the shape and pose, respectively. Fitting starts with
~β =~0, i.e., an average shape of SMPL model, and~θ =~θop. Fitting
term follows the idea of the cloth term in single-frame objective
of [ZPBPM17]. Fitting objective is the sum of two terms:

E f it(~β,~θ) = λoutEout(~β,~θ)+λinEin(~β,~θ), (8)

where Eout penalizes model vertices that penetrate the input scan
mesh Mscan, while Ein encourages the model vertices that are inside
Mscan to remain close to the surface.

Eout(~β,~θ) = ∑
vi∈Vsmpl

(1−δi)dist(vi,Mscan)
2 (9)

Ein(~β,~θ) = ∑
vi∈Vsmpl

δi GM(dist(vi,Mscan)
2) (10)

where dist(point,sur f ace) calculates the distance for a point to the
closest primitive on the surface, δi is an indicator function that is
1 when a vertex is inside Mscan and 0 otherwise, and GM(x) is a
Geman-McClure smoothing function used here to handle outliers
on noisy scans. To calculate δi, we utilize the method of [BA05]
implemented in [JP∗18]. We use the L2-norm regularization on
shape parameters Eβ(

~β) = ‖β‖2. In practice, shape parameter reg-
ularization prevents compensation of pose estimation errors by ex-
treme shape adjustments, e.g., shortening limbs. We regularize pose
to be close to the initial guess ~θop using a Mahalanobis distance
Eθ(~θ) = (~θ−~θop)

T
Σ
−1
θ

(~θ−~θop), where Σ
−1
θ

is a covariance ma-
trix computed from the pose training set of [LMR∗15] as part of
the work of [ZPBPM17].

Implementation. We additionally increase robustness by apply-
ing classical ICP heuristics. We ignore far-distance vertices, and
those vertices whose normal point to the opposite direction from
the normal of the closest primitive on Mscan. For optimization, we
use Levenberg–Marquardt algorithm implemented in [AMO], with
analytically computed derivatives. To prevent issues with parame-
ter scaling, optimization is performed individually for each group
of parameters: translation, shape, and joints rotation, in this order.

Appendix B: Removal of Ill-projected feature points

We use the following simple heuristics to determine ill-projected
points to be discarded. Let q and p denote a feature point on SMPL
body mesh B and its closest distance projected point on scan mesh
S, respectively. We also shoot a ray from q on its positive and neg-
ative normal ~n(q) directions and find the closest intersection point
r with either B or S. We discard the projected point p if one of
following condition is met (Fig. 19):

1. r does not exist.
2. r is found on B.
3. The normal directions ~n(q) and ~n(r) from q and r are almost

opposite:~n(p) ·~n(r)<−0.5.
4. p and r are too far apart: |p− r|> 0.4L, where L is the length of

body.

Note that we only use the closest distance projected point p. The
ray-projected point r is only for validating p.
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