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Fig. 1. We introduce NeuralTailor – a deep neural network-based framework that recovers structured representation of garment sewing patterns and stitching
information from point clouds.

The fields of SocialVR, performance capture, and virtual try-on are often
faced with a need to faithfully reproduce real garments in the virtual world.
One critical task is the disentanglement of the intrinsic garment shape from
deformations due to fabric properties, physical forces, and contact with the
body. We propose to use a garment sewing pattern, a realistic and compact
garment descriptor, to facilitate the intrinsic garment shape estimation.
Another major challenge is a high diversity of shapes and designs in the
domain. The most common approach for Deep Learning on 3D garments is to
build specialized models for individual garments or garment types. We argue
that building a unified model for various garment designs has the benefit
of generalization to novel garment types, hence covering a larger design
domain than individual models would. We introduce NeuralTailor, a novel
architecture based on point-level attention for set regression with variable
cardinality, and apply it to the task of reconstructing 2D garment sewing
patterns from the 3D point cloud garment models. Our experiments show
that NeuralTailor successfully reconstructs sewing patterns and generalizes
to garment types with pattern topologies unseen during training.
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1 INTRODUCTION
Computer graphics has a long history of 3D garments research,
from modeling to the physics simulation. In this paper, we tackle
the problem of estimating the underlying rest shape of a garment for
which a deformed 3D shape is available. Such a 3D garment shape
could be a draping result from a physics simulation or a 3D scan
of a real-world garment. By rest shape, we mean a representation
of a garment shape disentangled from deformation due to external
physical forces, collisions, and fabric properties. Understanding
such garment structure allows shaping the same garment in novel
conditions like draping it on new body shapes or poses or enables
the ability to adjust a captured garment’s design. These abilities
are highly desirable for virtual try-on, garment design, or avatar
creation.
Building upon advances in Deep Learning research for shape

analysis, we use a learning-based approach to tackle the problem in
this work. To the best of our knowledge, ours is the first work to
explore a learning-based solution for estimating garment rest shapes,
with previous work either relying on fitting one of the pre-defined
templates [Hasler et al. 2007; Jeong et al. 2015; Yang et al. 2018],
optimizing rest shape directly from a good initial guess [Bartle et al.
2016; Brouet et al. 2012; Wang 2018], surface flattening [Bang et al.
2021; Liu et al. 2018; Meng et al. 2012; Wang et al. 2009], or inverting
physics deformations analytically [Ly et al. 2018] (see Sec. 2 for
more detailed review). Learning-based methods have the advantage
of scalability to acquire knowledge from large garment databases
and cover the space of garment designs better than methods based
on template fitting while allowing fast processing at inference time,
unlike optimization-based solutions.

One of our key ideas is to use a garment sewing pattern as a base
representation for a garment rest shape. We assume a sewing pattern
to be a collection of the 2D pieces of fabric (panels) with a known
placement of each panel around the human body and information
on how the panels are stitched together to form the final garment.
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We model a panel to be a closed piece-wise curve with every piece
(edge) being either a straight line or a Bezier spline. Such a sewing
pattern is a close approximation of how most real-world garments
are constructed and thus serves as a strong prior for disentangling
rest shape from physical deformation or the imperfections of the
data acquisition process. At the same time, sewing patterns allow
describing a variety of garment types and designs uniformly, unlike
the approaches based on parametric templates as in [Wang et al.
2018a]. Our problem formulation can also be viewed as a case of
learning-based structure recovery for deformable objects. To the
best of our knowledge, our work is one of the first of this kind, as
most studies in the structure learning domain use datasets of rigid
objects.
Reconstruction of a sewing pattern as a structure with a deep

neural network (DNN) presents multiple challenges. It requires
predicting a set (of panels) with variable cardinality across garment
types. Every set element is a structured object itself and may exhibit
significant shape variations, and stitches being cross-connections
between individual edges of panels complicate the structure even
more. We propose a NeuralTailor framework that recovers panel
structure through a combination of 3D point-wise attention for a
high-level decision on topology and an RNN module for predicting
panel details. Stitching information is regressed using a separate
stitch connection module implemented as a classifier on edge pairs.
We also present a strong baseline model based on the RNN hierarchy
to highlight the key features that enable NeuralTailor generalization
properties. Our experiments show that NeuralTailor successfully
reconstructs sewing patterns for various garment designs, including
novel garments with sewing pattern structures not seen during
training.
To summarise, our contributions are as follows:
• A new problem of learning-based recovery of a structured
representation of garment sewing pattern.

• A strong baseline and an upgraded solution for the first deep
learning framework that predicts a structural representation
of a sewing pattern from a 3D garment shape and generalizes
to novel garment types.

Code and pre-trained models for NeuralTailor framework are
available at GitHub1.

2 RELATED WORK
This section reviews previous studies related to our work. Specifi-
cally, we discuss research on estimating the rest shape of the gar-
ment, review other approaches to reconstructing controllable gar-
ments with DNNs, and approaches to representing structured ob-
jects in general.

2.1 Garment Rest Shape Estimation
Several approaches have been proposed to estimate the rest shape
of garments.
Fitting garment templates. The first approach is to rely on a

set of garment templates and choose a template and its parameters
to replicate an input garment as closely as possible. A notable work

1https://github.com/maria-korosteleva/Garment-Pattern-Estimation

of [Chen et al. 2015] performs a search in the database of 3D gar-
ment parts (skirts, sleeves, collars, etc.) and stitches them together to
form the final garment. While having the advantage of consistently
producing plausible garments, this approach requires an extensive
database to deal with the high diversity of garments, which poten-
tially leads to high computational costs. Several studies [Hasler et al.
2007; Jeong et al. 2015; Yang et al. 2018] utilize sets of parametric
sewing patterns, described in terms of numerical values such as
sleeve length, waist width, etc., and perform optimization in the
parameter space so that a chosen pattern matches an input garment
when simulated on top of a body model. Wang et al. [2018a] takes
one step further and trains a DL-model for each parametric garment
template (defined similarly as in the studies mentioned above) to
predict the template-specific parameters from an input garment
sketch. Parametric templates reduce the storage demand and al-
low smooth exploration of the design space, unlike the databases
of individual examples. However, different garment types would
require different sets of parameters, forcing the usage of different
models for each garment type and preventing knowledge sharing
across types. To solve this, we propose using a sewing pattern as
shape parametrization, a typical structure for most garment types.
Our approach allows for generalization beyond the garment types
present in the training set, as demonstrated by our experiments in
Sec. 7.

Surface flattening. Another way to get a garment’s intrinsic
structure is directly cutting a 3D surface of an input garment into
developable 3D parts and then flattening every piece into 2D panels
with, for example, ARAP technique [Igarashi et al. 2005] or Varia-
tional Surface Cutting [Sharp and Crane 2018]. The flattening-based
approach works well in a controlled environment where an input
3D garment is not heavily deformed, the full, uncorrupted geometry
is available, and when the initial cutting strategy is provided by
a user or other means. For its simplicity and speed, this approach
is popular in solutions for garment design where a high degree of
manual control is acceptable [Daanen and Hong 2008; Decaudin
et al. 2006; Liu et al. 2018; Meng et al. 2012; Wang et al. 2003, 2005,
2009; Yunchu and Weiyuan 2007]. More recent studies adopt this
approach to allow automatic processing by employing cuts guided
by heuristic considerations [Bang et al. 2021] or by trained Deep
Learning model [Goto and Umetani 2021]. These works produce
plausible sewing patterns for various garment types but lack pattern
quality and rely on the quality of original geometry a lot. Another
recent work [Wolff et al. 2021] relies on having direct access to the
garment rest shape, which allows producing working patterns for
arbitrary garment designs with a general technique of Variational
Surface Cutting. On the other hand, our learning-based approach
neither requires uncorrupted, unsimulated geometry as input nor
additional pre-processing and is capable of producing clean panel
shapes.

Pattern geometry optimization. Much success in estimating
garment structure in terms of sensitivity to details was achieved
by optimization-based methods where some base geometric repre-
sentation is deformed to achieve a target. The formulation of the
target could be quite flexible, from some desired design features to a
3D garment model. Brouet et al. [2012] demonstrated this approach
to adapting garments to different body shapes while preserving
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the overall style. Bartle et al. [2016] proposed a garment editing
pipeline for users to create new garments directly in 3D by editing
and combining existing garments while ensuring correct sewing
patterns. Wang [2018] developed a method to adjust a standard
sewing pattern for a better fit on an input body shape, while Li
et al. [2018] enabled the creation of garments with desired folds’
design by simple sketching over the initial model. More recently,
Montes et al. [2020] used optimization of sewing pattern geometry
to find optimal fit and pressure distribution for tight clothing. These
methods require a good initial guess of the garment sewing pattern,
which is often unavailable. Our approach follows a more loose as-
sumption that the input belongs to a distribution modeled by the
training data and even makes successful predictions on garment
types outside the training domain. This assumption will become
even less demanding as more data becomes available.
Inverting Physics. The work of [Ly et al. 2018] explores an

interesting direction of performing a physics inversion by jointly
estimating the rest shape and the physical forces acting on an input
object conditioned on material properties provided by the user. This
approach applies to any shell-like objects, including garments, and
is not limited by the representational power of datasets. On the
other hand, the proposed method is computationally demanding
and has trouble handling the folds and wrinkles due to contacts,
which is typical for garments draped on humans. On the contrary,
our approach successfully processes folds and wrinkles and can
perform fast once trained.

2.2 Learning-based reconstruction of controllable
garments

We see a potential for our approach of predicting sewing patterns
to be used for reconstructing controllable 3D garments from 3D
scans or images of people. A number of works in recent years ad-
dress this problem for learning-based retargeting [Bertiche et al.
2020; Lal Bhatnagar et al. 2019; Ma et al. 2020; Patel et al. 2020;
Santesteban et al. 2019; Wang et al. 2018a; Zakharkin et al. 2021], an-
imation [Jiang et al. 2020; Ma et al. 2021; Patel et al. 2020; Santesteban
et al. 2021; Wang and Inc 2019; Zakharkin et al. 2021], or garment
style adjustment [Corona et al. 2021; Su et al. 2020; Tiwari et al. 2020;
Wang et al. 2018a]. Some of the works rely on meshes of known
topologies and thus require their models to be trained per-garment
or per-garment type [Jiang et al. 2020; Patel et al. 2020; Santesteban
et al. 2019; Tiwari et al. 2020; Wang et al. 2018a; Wang and Inc 2019].
Usage of displacements [Bertiche et al. 2020; Lal Bhatnagar et al.
2019; Ma et al. 2020], UV-maps [Su et al. 2020], point clouds [Ma
et al. 2021; Zakharkin et al. 2021], and implicit functions [Corona
et al. 2021] enabled representation of different garment styles within
the same model and even showed the ability to reconstruct unseen
outfits [Ma et al. 2021], but the garments are reconstructed with
design, material properties and deformations fused together.
We believe that reconstructing disentangled garment represen-

tations will eventually lead to better quality, control, and general-
ization. Shen et al. [2020] demonstrate a garment model generator
conditioned on sewing patterns with capabilities to generalize to
novel designs. In our work, we show that using sewing pattern as a
natural structured representation of design when inferring it from

raw inputs allows not only for generalization to unseen garment
examples as in [Ma et al. 2021], but unseen garment types. More-
over, sewing patterns are retargetable by design and, when coupled
with a physics simulator, produce physically accurate 3D recon-
structions with guaranteed developability, which geometry-based
learned reconstructions cannot do yet.

2.3 Structural Deep Learning
The problem of representing sewing patterns in DNN is highly re-
lated to a more general problem of representing the structure of the
objects composed of simpler components in DNN. Studies on this
problem often experiment with 3D furniture as an example of such
structured objects. Our work builds upon the ideas of hierarchical
and sequential modeling of part relationships of GRASS [Chaudhuri
et al. 2017], StructureNet [Mo et al. 2019], SAGNet [Wu et al. 2019],
LSD-StructureNet [Roberts et al. 2021], and several works in vector
graphics generation [Carlier et al. 2020; Ha and Eck 2018; Wang and
Lian 2021]. On top of that, we attempt to generalize beyond the com-
ponent collections presented in the training set. Hence, we introduce
a novel attention module and connectivity classification module for
stitch prediction. A recent work of Shape Part Slot Machine [Wang
et al. 2021] demonstrated a similar generalization ability by focusing
on connections between components rather than the global shape.
In our work, we come to a similar conclusion as [Wang et al. 2021] –
that focusing on the local context allows for both prediction quality
and structural generalization capabilities.

3 DATASET
In this work we use Dataset of 3D garments with sewing pat-
terns [Korosteleva and Lee 2021a] as introduced in [Korosteleva and
Lee 2021b]. It covers a variety of garment designs, including varia-
tions of t-shirts, jackets, pants, skirts, jumpsuits, and dresses, with
22,000 garments sampled from 19 base types in total. Each garment
sample contains a garment 3D model as draped on SMPL [Loper
et al. 2015] average woman body shape in T-pose, a corresponding
sewing pattern represented as a structure, and a corrupted 3D model
imitating some of the 3D scanning artifacts. The dataset is limited
in representing human poses and shapes but provides a good range
of garment designs. Hence, it provides a good starting point for
tackling the problem of sewing pattern recovery from 3D models.

Panel classes and panel vectors. The original dataset does not guar-
antee that similar panels from different garment types, e.g., pant
panels in pants and jumpsuits, have the same labels. Hence, we
introduce classes of panels that we use to group panels by role and
location around the body across garment types. For example, panels
covering the front of the trunk from T-Shirts, dresses, jumpsuits,
etc., are grouped in the "front panels" class. The labeling for panels
of base templates is included with the published code.

Additional sample filtering. The original dataset contains garment
samples with overlapping designs – these samples have different
sewing pattern topologies and may belong to different garment
types but produce similar shapes in 3D, as shown in Fig. 2. Such
cases are common in real-world garments, but they significantly
complicate an already difficult problem. In this work, we assume
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Fig. 2. Garments with design overlap. Two different sewing patterns produce
similar 3D shapes when draped.

that design overlap in the data is minimal to focus our attention on
developing a base solution for sewing pattern reconstruction and
topology generalization. We manually analyzed parameter spaces
of the dataset base templates and filtered them to contain mostly
non-overlapping examples.

Dataset split. We use the train/test group split of garment types as
introduced in the dataset [Korosteleva and Lee 2021a]. Garment
samples from the seven types of the test group remain unseen to
the NeuralTailor during training and are only used for evaluation,
as shown in Sec. 7. We additionally designate 100 examples of each
train group type as a validation set for model selection and 100
examples of each type as a test set to compare performance on seen
and unseen types. This split leaves 19236 garment samples in the full
training set. The number of training samples when sample filtering
is applied is 9678.

4 OVERVIEW
Our work explores several directions to approach the task at hand.
We designed an original thought-through baseline model that can
successfully represent the sewing pattern structures and learn to re-
construct them (Sec. 5). It is based on extracting a latent space vector
from an input point cloud and then decoding it into a sewing pattern
through a two-step hierarchy of RNNs, with stitching information
represented as a property of individual panel edges.
We then updated the baseline with several new ideas (Sec. 6).

Firstly, we introduce a point-level attention mechanism that eval-
uates latent codes for individual panels based on local rather than
global context. Secondly, we separate stitch prediction into an inde-
pendent module that performs edge pairs classification into being
connected or not.

As shown in Sec. 7, these improvements make the overall frame-
work generalize to sewing pattern topologies unseen during training.
The achieved generalization feature is critical for a diverse domain
like garments. Gathering a fully representative dataset of garments

is genuinely hard, and it is nearly impossible to achieve design
generalization by training specialized per-type models, which is a
common approach in Deep Learning for 3D garments.

5 BASELINE MODEL

5.1 Point Features Encoder
Deep learning-based processing of point clouds is a challenging
problem of its own and has seen rapid development in recent years.
In this work, we employ EdgeConv [Wang et al. 2018b] as a base
block for the encoder for its simplicity and performance on par
with other state-of-the-art point cloud-based network architectures,
according to [Guo et al. 2020]. The main advantage of EdgeConv
is its ability to aggregate information in feature space rather than
spatially by dynamically re-building a connectivity graph on every
EdgeConv layer. Our encoder consists of two EdgeConv layers, as
shown in Fig. 3, with a skip-connection from the input 3D point
cloud to the output of the last EdgeConv layer. Final per-point
features are then aggregated into a single feature vector by average
pooling.

5.2 LSTM for Panel Encodings
In the next stage, the model reconstructs latent codes for each panel
in a sewing pattern given the global latent code. Having no particular
order with respect to each other, panels represent a set whose cardi-
nality (number of panels) varies across garments. One of the simpler
solutions to represent such a structure is to define an arbitrary order
on set elements and then employ a sequence-based model to predict
the elements of the formed sequences, as was done for structured
predictions in [Wu et al. 2019]. OrderlessRNN [Oguz Yazici et al.
2020] takes the set-as-sequence approach even further by allowing
an RNN-based network to output set elements in any order instead
of following a pre-defined one by a clever loss function construction,
which helps improve the performance of their target task.

Following this line of work, we design panel encoding prediction
as an LSTM [Hochreiter and Schmidhuber 1997] module for our
baseline model for its capability to model sets of variable cardinality.
This LSTMmodule takes in a garment global latent code and outputs
a sequence of latent vectors of panels, which are then processed
by Panel Decoder as described below. We experiment with both
pre-defined order and orderless losses approach, as shown in Sec. 7.

5.3 Panel Decoder
Each panel latent vector predicted in the previous step is processed
by the panel decoder to recover the panel shape and stitching infor-
mation. The panel decoder consists of an LSTM module and a linear
module. The LSTM converts a panel encoding into a sequence of
edge features comprising the panel, and an additional linear module
regresses the 3D placement of the panel. The details of edge and
placement representations are discussed below.

5.3.1 Panel representation. Wemodel a panel as a sequence of edges
– smooth segments of a closed piece-wise curve – with every edge
being either a straight line or a quadratic Bezier spline, similarly
to their representation in the dataset. Using splines to represent
curvy edges instead of discretization is more compact, prevents
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Fig. 3. Overview of Baseline architecture for sewing pattern recovery. The input point cloud of 𝑁 points gets processed by two EdgceConv [Wang et al. 2018b]
layers outputting per-point features that are then aggregated by average pooling to form the latent garment code. This latent representation is then decoded
into the predicted sewing pattern by hierarchically organized LSTM blocks. Pattern-level LSTM unfolds the latent code into the list of encodings of individual
panels. Each panel encoding is processed by another LSTM cell to produce a sequence of edge features (including stitching information) and 6D placement of
the panel. The same Panel LSTMs and MLP models are applied to each panel encoding.

resolution-related artifacts, and ensures simple stitch definition as a
1-to-1 edge connection.

5.3.2 Edge features. We use the following idea to construct a mean-
ingful sequential representation of panel edges. Panel decoder out-
puts every edge as a 2D vector, from the edge starting point to its
endpoint as follows:

®𝑒𝑖 𝑗 = 𝑣 𝑗 − 𝑣𝑖 ,

where 𝑣𝑖 and 𝑣 𝑗 are the 2D local coordinates of vertices 𝑖 and 𝑗

connected by 𝑒𝑖 𝑗 . Since every panel is a closed piece-wise curve,
these edge vectors form a loop when ordered and traced sequentially.
2D coordinates of any panel vertex can be obtained by adding a
corresponding edge vector to the 2D coordinates of a previous vertex
in the panel. The first vertex of the loop is always assumed to
be at the origin of the panel local space. The dataset guarantees
consistency in the choice of edge loop first vertex and the direction
of loop traversal across panels by design, so we simply use the edge
loop order as given in the data when evaluating losses.

Since edges are not necessarily straight lines, we use curvature
coordinates as an additional edge vector feature. Curvature coor-
dinates are the 2D coordinates (𝑐𝑥 , 𝑐𝑦) of quadratic Bezier spline
control point and are defined in the local space of an edge. In this
coordinate system (0, 0) and (1, 0) indicate the positions of edge
vertex. Hence, 𝑐𝑥 indicates the position along the edge, roughly
corresponding to the location of the curvature peak, and 𝑐𝑦 con-
trols the depth of the curvature. If an edge is straight, its curvature
coordinates are marked as (0, 0). The edge feature will then look
like this:

(𝑒𝑥 , 𝑒𝑦, 𝑐𝑥 , 𝑐𝑦),

where (𝑒𝑥 , 𝑒𝑦) = ®𝑒𝑖 𝑗 are 2D edge vector coordinates and (𝑐𝑥 , 𝑐𝑦) are
curvature coordinates.

Since different panels have different numbers of edges, the edge
sequences are padded with zero feature vectors to the length (14
in our experiment) that is equal to or larger than the maximum
number of edges found in the training set.

5.3.3 Stitch Tags for stitching information prediction. Stitches are
cross-connections of the edges in the network output hence pre-
dicting them represents a challenge for a feed-forward style of
network architecture. Our first idea is to include stitching informa-
tion directly into the edge features. We define per-edge stitching
information as the following feature vector:

(𝑓0/1, 𝑠1, 𝑠2, 𝑠3),

where 𝑓0/1 is a binary class of whether an edge is free or belongs
to any of the stitches, and (𝑠1, 𝑠2, 𝑠3) is a learned vector called a
stitch tag that is designed to identify the edges that are connected.
The definitive property of stitch tags is as follows: tags of edges
from the same stitch are expected to be similar, but edges from
different stitches should have tags that are different by a margin.
We use Euclidean distance between tags as a similarity measure.
The connectivity reconstruction then comes down to filtering out
free and connected edges and comparing stitch tags of the pairs
of connected edges. Note that the edges classified as “free” are not
expected to have meaningful stitch tags.
This idea enables a compact representation of pattern connec-

tivity that does not depend on the number of stitches or the total
number of edges in a pattern and avoids explicitly referencing edge
IDs, allowing the encoding of different sewing pattern topologies.
The network learns to provide suitable values of the stitch tags by
following the loss function that enforces the correct behavior during
training, as described in Sec. 5.4.

5.3.4 Panel 3D placement representation. The following feature
vector represents the panel placement in the world space:

(𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑡1, 𝑡2, 𝑡3),

where (𝑞1, 𝑞2, 𝑞3, 𝑞4) is a quaternion that reflect panel rotation.
Panel translation (𝑡1, 𝑡2, 𝑡3) is represented as 3D translation of the
top mid-point of the panel’s 2D bounding box when the panel is
viewed in 3D. We found that in most cases, this point corresponds to
body features (e.g., neck, waist) important for panel placement and
thus exhibits stability across particular stylistic choices (e.g., skirt
length). This translation formulation showed a more accurate 3D
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placement prediction than using panel local origin as the reference
point in our tests.

5.4 Loss functions
The full loss for training the panel shape and placement prediction
module is as follows:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑒𝑑𝑔𝑒 + 𝐿𝑙𝑜𝑜𝑝 + 𝐿𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 + 𝐿𝑠𝑡𝑖𝑡𝑐ℎ𝑒𝑠 (1)

5.4.1 Edge loss. The edge loss 𝐿𝑒𝑑𝑔𝑒 evaluates the quality of panel
geometry prediction. Ground truth panel representation is con-
verted to the sequential format of 2D edge vectors as described
above. Then, 𝐿𝑒𝑑𝑔𝑒 is computed as an MSE loss on edge vectors
and curvature coordinates between the ground truth and the corre-
sponding edge features from NeuralTailor output.

5.4.2 Loop loss. The loop loss 𝐿𝑙𝑜𝑜𝑝 is added to additionally enforce
the loop closure property of panel representation. It evaluates the
𝐿2 norm of the distance between the origin and final point of the
panel edge sequence.

5.4.3 Placement loss. The placement loss 𝐿𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 is an MSE loss
on corresponding rotation and translation representations converted
from ground truth placement information to match the network
output specification.

5.4.4 Losses for stitch prediction. Training loss for predicting stitch-
ing information consists of the following two terms:

𝐿𝑠𝑡𝑖𝑡𝑐ℎ𝑒𝑠 = 𝐿𝑐𝑙𝑎𝑠𝑠 + 𝐿𝑡𝑎𝑔𝑠 . (2)

The class loss 𝐿𝑐𝑙𝑎𝑠𝑠 encourages learning proper edge class, mod-
eled as a binary cross-entropy loss for edges classification into free
and non-free. The tag loss 𝐿𝑡𝑎𝑔𝑠 enforces the definition of the stitch
tags (Sec. 5.3.3) by referencing a list of stitches from the data. Its for-
mulation is a variation of the triplet loss [Schultz and Joachims 2003]
and consists of two components – similarity and separation losses.
𝐿𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 encourages the stitch tags of a pair of edges that are
stitched together to be close to each other, and 𝐿𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 pushes
all the stitch tags from different stitches apart by a predefinedmargin
𝛿 as follows:

𝐿𝑡𝑎𝑔𝑠 = 𝐿𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝐿𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

𝐿𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
∑

(𝑖, 𝑗) ∈𝑠𝑡𝑖𝑡𝑐ℎ𝑒𝑠

𝑡𝑎𝑔𝑖 − 𝑡𝑎𝑔 𝑗
2

𝐿𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 =
∑

𝑖, 𝑗 ∈𝑛𝑜𝑛_𝑓 𝑟𝑒𝑒
(𝑖, 𝑗)∉𝑠𝑡𝑖𝑡𝑐ℎ𝑒𝑠

𝑚𝑎𝑥 (𝛿 −
𝑡𝑎𝑔𝑖 − 𝑡𝑎𝑔 𝑗

2 , 0),
where 𝑖 , 𝑗 are edge IDs, 𝑠𝑡𝑖𝑡𝑐ℎ𝑒𝑠 is a set of edge pairs to be stitched
together, and 𝑛𝑜𝑛_𝑓 𝑟𝑒𝑒 is a set of non-free edges that participate in
any of the stitches, as opposed to the edges that are left free. Both
sets are obtained from the ground truth sewing pattern.

We found the training to bemore efficient if 𝐿𝑐𝑙𝑎𝑠𝑠 and 𝐿𝑡𝑎𝑔𝑠 losses
are introduced after a few epochs, allowing the model to learn the
overall concept of sewing patterns first. In our experiments, these
loss components are added after the 40th epoch.

5.4.5 Implementation of panel ordering and padding. Evaluation of
the above losses requires a choice of panel ordering within a sewing
pattern. To ensure that ground truth panels of the same class are
matched to the same positions in the net output panel sequence,
we organize panels within sewing patterns into panel vectors. We
fix the order of panel classes and place each existing panel in the
panel vector according to its class id. The slots corresponding to
classes not present in a sewing pattern are filled with empty panel
placeholders, represented by zero tensors of the same dimensionality
as the actual panels. In contrast to the usual approach of placing
the padding at the end of a sequence, this arrangement spreads the
panel placeholders across the panel sequence. This strategy allows
the ordering to be more consistent across different topologies and
encourages the network to explore the similarity between the panels
from the same class. In our experience, the choice of padding strategy
did not seem to affect the performance of the Baseline model, but it
paid off when we improved the architecture, as discussed in Sec. 6.
We additionally experiment with removing the panel order by

finding the order of panels in the ground truth that best matches
the order of panels in predicted sewing patterns, similarly to Or-
derlessRNN [Oguz Yazici et al. 2020]. The matching is performed
by solving an assignment problem between the two sets of panels
with an off-the-shelf algorithm. The distances between panels are
evaluated as Euclidean distances of their vector representation con-
sisting of the concatenation of all the edge features in a panel and
6D placement vector.

6 NEURALTAILOR: IMPROVEMENTS FOR
GENERALIZATION

We introduce two modifications to the baseline framework that
encourage modular and local context-based reasoning within the
architecture. These features enable recognizing familiar panel com-
ponents and reconstructing novel pattern topologies by recombining
these components.

6.1 Attention-based Panel Encodings
As introduced in Sec. 5, the baseline model employs sequence pre-
diction from global garment latent code to reconstruct the latent
codes for individual panels. This global bottleneck makes the model
prone to relying on the overall shape of the garment and less likely
to exploit its per-component structure.

Another option would be to attend to only a relevant part of the
input point cloud to construct a latent code for a corresponding
panel. This approach would allow the model to construct the final
sewing pattern from relevant pieces. An additional consideration is
that garments of different types have a different number of panels,
and the types of panels differ, too.

One thing we may safely assume is that one sewing pattern con-
tains no more than one panel of each panel class as per the definition
of panel classes (Sec. 3). Hence, we implement the attention idea by
introducing an additional MLP module that acts on point feature
vectors and predicts per-point per-panel-class probability scores
of how likely it is that a particular point belongs to a given panel
class, as shown in Fig. 4. The model then obtains encodings for each
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Fig. 4. Overview of NeuralTailor architecture. The first core difference with baseline is the attention MLP module that predicts per-panel-class attention scores
for each point (MLP weights are shared across the points). The scores are then used to weigh the point features before aggregating them into per-panel latent
codes that are then decoded into panel shapes as in the baseline. The second difference is the recovery of stitching information by using a separate StitchMLP
that classifies edge pairs of the predicted pattern into being stitched or not (MLP weights are shared across edge pairs).

Fig. 5. Attention weights for a jumpsuit example (unseen type) corresponding to highlighted panels. Interestingly, attention weights spread to the areas of
panels’ symmetrical counterparts (sleeve, top) and, when needed, to the representative areas of global shape (shape of the top front and back panels depends
on whether the bottom is skirt or pants, hence the model grabs some features from the bottom. Best viewed on screen zoomed-in.)

panel class by simply pooling point features as given by the encoder
(Sec. 5.1) weighted by the attention scores of the relevant class.

Ideally, attention weights should encourage the recognition of
components corresponding to panel classes across different gar-
ments. Hence, we would like attention weights to highlight only the
minimal local context relevant to each panel class. For that reason,
weights should be sparse, and each point should participate in just
one or a few classes. We encourage this behavior by employing
SparseMax [Martins and Astudillo 2016] as the last layer of the
attention module evaluated on per-point attention scores.
Examples of attention weights predicted by our framework are

given in Fig. 5. The attention weights highlight the local context
and contain additional clues related to garment type.

6.2 Stitching Information Regression Neural Network
Stitch-tag-based pattern stitches prediction of the baseline model
yields an effective representation of stitches to reconstruct the whole
sewing pattern in one single model. However, both stitching infor-
mation and panel shape are inferred from the same panel latent

code, which may give an entangling effect of the two properties.
For example, front panels of T-shirts and jumpsuits have only one
difference – the latter requires the bottom edge to be separated into
two for correct connection with pant panels. Although the training
set contains examples of T-shirt front panels connected to sleeves, it
does not have such examples for jumpsuits. Having stitching infor-
mation entangled with shape may result in the network replicating
this bias of the training data and refusing to predict stitches for
jumpsuits front panels even when sleeves are present in the input
3D point cloud.

For this reason, we shifted towards considering the panel edges as
individual objects rather than panels’ parts. We hypothesize that the
pattern geometry and panel placement may provide enough infor-
mation to predict the stitches without accessing the input geometry.
Surprisingly, it turned out to be true.
We constructed a simple MLP model that takes a pair of sewing

pattern edges as input and outputs the probability of these edges
being connected by a stitch (Fig. 4). Each edge is represented as a
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vector
(𝑣𝑠𝑡𝑎𝑟𝑡𝑥 , 𝑣𝑠𝑡𝑎𝑟𝑡𝑦 , 𝑣𝑠𝑡𝑎𝑟𝑡𝑧 , 𝑣𝑒𝑛𝑑𝑥 , 𝑣𝑒𝑛𝑑𝑦 , 𝑣𝑒𝑛𝑑𝑧 , 𝑐𝑥 , 𝑐𝑦),

where (𝑣𝑠𝑡𝑎𝑟𝑡𝑥 , 𝑣𝑠𝑡𝑎𝑟𝑡𝑦 , 𝑣𝑠𝑡𝑎𝑟𝑡𝑧 ) and (𝑣𝑒𝑛𝑑𝑥 , 𝑣𝑒𝑛𝑑𝑦 , 𝑣𝑒𝑛𝑑𝑧 ) are 3D coordi-
nates relative to the body model of panel vertices connected by the
stitch, and (𝑐𝑥 , 𝑐𝑦) are the edge curvature control point coordinates,
as described in 5.3.2.

6.2.1 Training set structure. The only tricky part of training this
stitch classification model was setting up the training set. A naive
training set would include all possible combinations of edge pairs
for each sewing pattern in the garment dataset. This training set is
highly unbalanced as most edge combinations are not connected
by a stitch. It also has inadequately more examples for complex
patterns with many panels than simpler ones, as the number of
edge pairs grows quadratically with the total number of edges in a
sewing pattern. The latter property also results in the fast growth of
the training set size as we add more sewing patterns to it. Instead,
on each epoch, we sample a given number of edge pairs from each
sewing pattern, with oversampling of stitched pairs and under-
sampling of non-connected pairs. Since our dataset contains many
samples that share sewing pattern topologies, we expect the network
to get enough clues for non-connected pairs during training. In
addition to these precautions, we avoid bias towards a particular
choice of vertices or edges order in pairs by randomizing these
properties at training time.

6.3 Training process adjustments
Training of NeuralTailor framework is now performed in two steps:
first, training the model for pattern shape regression, and second,
training the stitch prediction model, in this order. The stitch predic-
tion model is trained on the edge features reconstructed by the pat-
tern shape model instead of using edges from ground truth sewing
patterns. This decision increases robustness to noise in the pattern
shape model output at inference time, which we demonstrate in
Sec. 7.3.1.

The losses for each model are adjusted as follows. Since the stitch
prediction moves to a separate module, the 𝐿𝑠𝑡𝑖𝑡𝑐ℎ𝑒𝑠 is not needed
for training the pattern shape regression; hence the total loss for it
is:

𝐿𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠ℎ𝑎𝑝𝑒 = 𝐿𝑒𝑑𝑔𝑒 + 𝐿𝑙𝑜𝑜𝑝 + 𝐿𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 , (3)
with 𝐿𝑒𝑑𝑔𝑒 , 𝐿𝑙𝑜𝑜𝑝 , and 𝐿𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 being the same as introduced
in Sec. 5.4. The ordering of ground truth panels for loss evaluations
follows the same scheme based on panel classes as for the baseline
model training. As for stitch regression model, we train it as a binary
classification task using binary cross-entropy loss (BCE).

7 EVALUATION
This section demonstrates the capabilities of NeuralTailor in differ-
ent setups. First, we introduce the collection of measurements to
evaluate sewing pattern prediction quality. We then compare the
performance of NeuralTailor with our baseline solutions for pattern
shape and stitch information reconstruction on garment types that
were used or hidden during training. We then further analyze the
behavior of the framework with different loss conditions, the ef-
fects of changing the panel classes or removing dataset filtering (as

introduced in Sec. 3), as well as the potential for generalization to
in-the-wild data. Lastly, we compare sewing patterns predicted by
NeuralTailor with the patterns suggested by a recent work solving
a similar problem [Bang et al. 2021].

7.1 Metrics
We evaluate the accuracy in predicting the number of panels within
every pattern (#Panels) and the number of edges within every panel
(#Edges). The cases in which the panel loop does not return to the
origin are counted as having an incorrect number of edges as they
usually require adding an edge to produce a connected shape. To
estimate the quality of panel shape predictions, we use the average
distance (𝐿2 norm) between the vertices of predicted and ground
truth panels with curvature coordinates converted to panel space
and acting as panel vertices in this comparison (Panel L2). Similarly,
we report 𝐿2 norm on the differences of predicted panel rotations
(Rot L2) and translations (Transl L2) with ground truth values. The
quality of predicted stitching information is described by a mean
precision (Precision) and recall (Recall) of predicted stitches.

7.2 Comparing LSTM and Attention-based solutions for
pattern shape recovery

Here we compare the baseline hierarchical LSTM (LSTM) architec-
ture, which relies on the global garment latent codes, versus the
attention-based model for pattern shape recovery (Att). The pres-
ence of Stitch Tags in the output affects the performance of both
models (Sec. 7.4.2), so for a cleaner comparison of shape recovery,
we train and compare both architectures without stitch tags. We
evaluate the models on the test set consisting of unseen garment
examples of the same types that were used during training and on
completely new types, according to the split described in Sec. 3.
As can be seen from the results reported in Table 1, the baseline
solution performs reasonably well on familiar types. However, it
fails to generalize with less than 7% success rate for predicting
the correct number of panels in sewing patterns. An orderless loss
(LSTM Orderless), which was found beneficial for RNN-based im-
age multi-labeling task [Oguz Yazici et al. 2020], did not improve the
results. However, the attention-based solution showcases the ability
to predict sewing patterns for the garment types unseen during
training, correctly predicting the number of panels in more than
80% of cases and performing well on other metrics. Examples of
successful reconstructions are given in the supplementary materials,
Fig. 11 and Fig. 12. In addition, the attention-based solution produces
better panel shape quality (1.5 versus 2.7 Panel L2 for LSTM) on the
test set but with somewhat less accurate panel placement.

7.3 Choosing the method for stitch prediction
To faithfully compare the two solutions for stitch prediction – stitch
tags as edge features and separate edge pairs classifier – we evaluate
both models on attention-based pattern shape prediction solution.
We either train it jointly with stitch tags or use a trained pattern
shape prediction model to produce inputs for the stitch model. The
LSTM-based method does not generalize to novel garment types
(Sec. 7.2); hence it cannot provide suitable inputs for stitching in-
formation recovery methods for those cases. In the case of unseen
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Seen types Unseen Types
Panel L2 #Panels #Edges Rot L2 Transl L2 Panel L2 #Panels #Edges Rot L2 Transl L2

LSTM w Stitch Tags 5.35 98.3% 99.0% 0.02 1.04 20.4 1.6% 35.3% 0.25 9.02
LSTM 2.71 99.8% 99.9% 0.004 0.32 14.7 6.5% 53.2% 0.17 6.75
LSTM Orderless 2.87 99.4% 99.9% 0.004 0.33 12.94 2.7% 59.0% 0.16 7.18
Att (NeuralTailor) 1.5 99.7% 99.7% 0.04 1.46 5.2 83.6% 87.3% 0.07 3.22
Att on Scan Imitation 1.53 99.6% 99.8% 0.04 1.42 5.44 83.2% 86.3% 0.07 3.39
Att w Stitch Tags 1.83 99.6% 99.8% 0.05 1.67 8.31 69.9% 79.9% 0.08 3.42
Att w/o Loop Loss 1.62 98.7% 87.5% 0.04 1.53 5.97 85.5% 60.9% 0.07 3.35
Att w Segm 2.28 95.3% 99.6% 0.05 1.62 7.48 76.3% 79.5% 0.07 2.87
Att w Alt Classes 1.53 98.8% 99.6% 0.04 1.45 7.96 73.1% 80.5% 0.08 3.57
Att w/o Data Filter 1.6/1.95 98.6/97.5% 99.8/99.2% 0.07/0.07 2.2/2.5 6.2/6.4 81.6/75.2% 88.5/88.2% 0.08/0.10 3.9/4.5

Table 1. Evaluating quality of pattern shape prediction on a test set consisting of garment types seen and unseen during training in various experiments. The
results for Att w/o Data Filter are reported for filtered and non-filtered test sets divided by "/".

Seen types Unseen Types*

Precision Recall Precision Recall

Stitch Tags 99.9% 99.9% 70.1% 72.9%
Model on GT 96.6% 88.6% 75.3% 60.6%
Model on Predictions 96.3% 99.4% 74.7% 83.9%

Table 2. Evaluation of stitch prediction in different experiments. Evaluation
of the Stitch Model is performed on sewing patterns reconstructed from 3D
inputs by the pattern shape model. * To reduce error propagation, perfor-
mance for unseen garment types was evaluated only on sewing patterns
with a correctly predicted number of panels.

garment types, we evaluate precision and recall scores only on the
outputs with a correctly predicted number of panels to prevent er-
rors of the shape prediction model from affecting the stitch metrics.

The results of the evaluation are given in Table 2.While stitch tags
give near-perfect predictions on known types, their performance
on unseen types is inferior to the best separate stitch model (Model
on Predictions) in both precision and recall scores. In addition,
training models with stitch tags seem to affect the performance of
the shape prediction quality for both LSTM and attention-based
solutions compared to the models trained without them (Table 1).
Pattern shape model training with stitch tags is significantly slower
(by about 15h on 2 GPU training). In contrast, the stitch classifier
is lightweight, with 20 min training on a single GPU aided by two-
hour inference of pattern shape model on the entire training set on
a single GPU to obtain training data for stitch prediction.
We believe that the successful performance of a simple edge

classifier model is explained by the fact that connected edges often
have similar shapes, are close to each other in 3D, and stitches are
often concentrated around certain body areas in our dataset. The
latter might not hold for more complex garment types; hence a
more sophisticated solution might be needed in the future. Another
essential feature of the model is its reliance on only the local context
of a potential stitch, which allows for a good performance on unseen
garment types.

7.3.1 Training set source for stitch prediction. There are two options
for choosing the type of input source to train connectivity predic-
tion: using the edge vectors from ground truth panels or using the
edges outputted by the trained pattern shape prediction module. We
experimented with both approaches and then tested both models on
the set of patterns outputted by the pattern shape prediction module
as part of the integrated pipeline (Table 2). As expected, the stitch
model trained on the pattern shape predictions is more robust to the
noisy inputs than the model trained on clean ground truth edges,
hence having a significantly better performance for both seen and
unseen garment types.

7.4 Loss ablation study
Most of the losses we use for training pattern shape prediction or
stitching are indispensable components, without which the network
will output random values for the corresponding variables. However,
we find the need to justify the usage of loop loss for panel shape
predictions and discuss encouraging segmentation-like behavior in
attention scores and the effect of stitch tags prediction on shapes.

Att w/o Loop Loss Att

Fig. 6. The front top panel of the dress sewing pattern as predicted by
models trained with and without loop loss. The loop loss encourages the
completion of shapes and reduces the relative shifting of edges.

7.4.1 Loop loss. A model trained with only the basic losses, exclud-
ing the loop loss, tends to produce panels with the last edge not
perfectly connected to the first one (Fig. 6). Loop loss helps alleviate
this issue. Quantitative analysis also reflects this effect: the overall
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Input 3D Garment Att Att w Alt classesGround Truth Att w/o Data Filter

Fig. 7. Examples of mispredicting sewing pattern topologies according to different data pre-processing strategies. Gray panels denote panels missing from
prediction, and red outlines indicate extra panels or panels with significant errors.

edge accuracy score drops drastically when the loop loss is removed
from the training process (Table 1).

7.4.2 Effect of stitch tags presence. Experiments for both LSTM
and Attention-based architectures show that the presence of stitch
tags in the model negatively affects the quality of predicted panel
shapes (Table 1). We conjecture that the reduction of complexity of
both the output and the loss function when stitch tags are removed
helps improve training for the rest of the sewing pattern features.
These experiments provide an additional reason to prefer the sepa-
rate stitching information regression model to the stitch tags-based
solution.

7.4.3 Learned attention scores vs. segmentation. The way we for-
mulate the attention scores (Sec. 6.1) is very similar to the typical
formulation for 3D model segmentation output layers. We also had
an intuition that attention scores should resemble segmentation
because they should attend to the area of the input 3D model corre-
sponding to that particular panel location. With these two factors,
it seems natural to encourage this segmentation-like behavior in
attention scores explicitly using segmentation loss and ground truth
segmentation labels provided with the dataset.
We implement segmentation loss on SparseMax scores as intro-

duced in the original paper [Martins and Astudillo 2016] and add
to the other losses on pattern shape with weighting to balance the
scales of errors. The point cloud segmentation of inputs is trans-
ferred from the original mesh segmentation by taking the class of
the nearest neighbor of each sampled point.

Results for the model trained on Segmentation loss (Att w Segm)
are reported in Table 1. Unfortunately, segmentation loss was detri-
mental to performance on both parts of the test set. A closer in-
spection of attention scores generated by the model trained without
segmentation loss (Fig. 5) reveals that while attention tends to con-
centrate on the areas close to the corresponding panel, it also spreads

to the areas of a panel’s symmetric counterpart and to the areas
that reveal related global features (e.g., the number of edges in top
front or back panels depends on whether they connect to pant or
skirt panels). Encouraging segmentation behavior may disturb the
network from discovering these or similar dependencies.

7.5 Effects of dataset preprocessing
As was introduced in Sec. 3, we grouped the panels that compose the
sewing patterns of garments in the dataset in classes and additionally
filtered samples of the dataset to reduce the design overlap issues.
Here we investigate the effect of these decisions.

7.5.1 Panel classes. Panels are grouped in classes by their role
in the garment and location around the body. For example, we
grouped the front panels covering the trunk from t-shirts, dresses,
and jumpsuits in one class (the full classification is given in the
supplementary materials). However, there are several different ways
to assign classes, and we found that the choice might affect the
performance of the final panel shape prediction. To demonstrate
this effect, we constructed an alternative set of classes where both
panels that correspond to the left and right opening of the jackets
are assigned a separate class. The original classification grouped one
of the sides with full front panels of t-shirts, dresses, and jumpsuits.
The results given in Table 1 demonstrate that this extended class
arrangement (AttwAlt Classes) has worse performance on unseen
garment types. In Fig. 7 we demonstrate failure cases for these
experiments to showcase qualitative differences. For example, when
the original classification misses or adds one side of the jacket, the
alternative ones miss or add both.
These observations lead to the conclusion that the question of

panel classificationmight be more complex than we initially thought
and thus need to be investigated further in more detail in future
work.
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Input Ours [Bang et al.] Input Ours [Bang et al.] Input Ours [Bang et al.]

Fig. 8. Comparison of sewing pattern reconstruction of NeuralTailor and the method of Bang et al. [2021]. Our method produces patterns with cleaner shapes,
shows the capability to handle complex panel arrangements (second column), and reproduces garment fit (third column). Best viewed on screen zoomed-in.

7.5.2 Sample filtering. Table 1 shows the results of the attention-
based pattern shape prediction as trained on the full dataset without
sample filtering (Att w/o Data Filter). The performance of this
model on the filtered test set is comparable to the results of our main
model (Att), although the panel shape metric is slightly worse on
both seen and unseen types. However, we should note that removing
filtering, increased the number of garment samples available for
training by about two times, which affects the performance as well.
It is noteworthy that the model trained on the full dataset pro-

duces different quality errors compared to the original run. Fig. 7
shows a prediction of extra sleeve panels for sleeveless but wide
garment examples or misinterpretation of a dress as a long t-shirt
pattern. These mistakes appear to be the issues of design overlap,
which we mentioned in Sec. 3.

7.6 Comparison with flattening-based sewing pattern
recovery

The work in the area of sewing pattern shape recovery is somewhat
limited, especially when focusing on the direct estimation of sewing
patterns from geometry without access to initial guesses or tem-
plates. Our closest competitor is the work of Bang et al. [2021] that
uses a flattening-based approach and shows generalization across
garment types.
We compare this work with the predictions of NeuralTailor on

garments from our test set. Note that our examples present favorable
conditions to the work as they contain clean and full geometry with
minimum distortions due to human poses. We chose garment sam-
ples from types supported by the original work (no jackets, hoods,
or jumpsuits). Figure 8 demonstrates that while both methods give
good results on simple garments (pants, pencil skirt), our method
consistently estimates the garment fit better (pants, t-shirt, dress),
while the competing technique produces slightly looser garments.
NeuralTailor can also handle stylistic panel arrangements that are
difficult to recover by the body-part-based cuts (skirt with a belt

and flared skirt). Sewing patterns produced by our method are sym-
metric and contain straight lines and simpler curves, reproducing
typically expected sewing pattern shapes.

7.7 Robustness to input noise
To get a complete picture of the NeuralTailor behavior, we test its
robustness to different types of noise present in the input.

7.7.1 3D Scanning Artifacts Imitation. Alongside the clean meshes,
the dataset contains their corrupted versions. The corruption im-
itates artifacts of 3D scanning – missing geometry in the areas
invisible to the capturing camera, which is a typical problem for
heavy folds (e.g., Fig. 2 in [Korosteleva and Lee 2021b]). We found
that of NeuralTailor is robust to this type of noise (Table 1) despite
being trained on full geometry only. Most likely, the randomness
and sparsity of point clouds sampled for training encouraged the
model to learn how to handle missing geometry. Another reason
could be the attention mechanism itself. It focuses the processing
on an even smaller number of points, which increases the chances
of avoiding the areas where gaps are likely to occur.

7.7.2 Gaussian Noise. In our synthetic point clouds, all the sampled
points are located precisely on the surface of the corresponding 3D
models. On the other hand, it is natural to expect noise in the points’
locations for the in-the-wild 3D scans.We approximate such artifacts
by adding Gaussian noise to the point locations of the point clouds
in the test set, varying the standard deviation between 0 and 1 cm.
Evaluation of NeuralTailor on these inputs (Figure 9) demonstrates
performance drop as the noise gets more severe. Hence, NeuralTai-
lor is only capable of handling small levels of noise, as present in
high-precision 3D scanning systems. Improving the robustness to
handle noisier data, e.g., from systems like Kinect or single-view
RGB reconstructions, would be an interesting direction for future
work.
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Fig. 9. NeuralTailor pattern shape reconstruction performance on seen (blue) and unseen (orange) garment types depending on the noise level in the input
point cloud. The noise is given as Gaussian noise with a specified standard deviation.

Fig. 10. Sewing patterns predicted by NeuralTailor on examples from Deep
Fashion3D dataset. For jeans, the panels for the belt (two panels on top)
were refined to proper shapes before draping.

7.7.3 In-the-wild data. We qualitatively evaluate the framework on
the garment captures from Deep Fashion3D dataset [Zhu et al. 2020]
(Fig. 10). We found that the model makes relatively good guesses
about the garment structure; for example, jeans got a pattern of
classic pants with a belt, a type that was not included in our dataset.
On the other hand, the quality of pattern shape and panel placement
prediction degraded on the in-the-wild scans, and bridging this
sim-to-real gap will be an important direction of future work.

8 DISCUSSION AND FUTURE WORK
This paper presented NeuralTailor, the first learning-based solution
for recovering sewing patterns as structures from 3D garment point
clouds. We introduced a baseline based on hierarchical LSTMs capa-
ble of recovering sewing patterns for drastically different garment
types within the same model. We then suggested a novel attention
mechanism and a stitch recovery module that both focus on explor-
ing local features to enable generalization to novel garment types
and sewing pattern topologies unseen during training.

This work is the first step toward neural sewing pattern recovery.
It successfully demonstrates how structured representation and con-
sideration for the local context could allow generalization beyond
the data available for training, which is particularly useful for the
ever-evolving garment domain.

However, there are several directions left for future research.
There is a need for additional solutions to handle overlapping de-
signs and, for example, make the framework produce multiple or
any of the plausible patterns for a particular input garment. It would
also be interesting to explore if the optimal panel clustering can
be found automatically instead of relying on a heuristic decision.
The current stitching model prediction, although successful, might
benefit from additional exploration and direct access to the input
3D point cloud.

Another consideration for future work is an exploration of sym-
metrical properties of garments, such as left-right symmetry or sym-
metry of edges in the stitches. Since symmetry could be violated
for stylistic purposes, we avoided incorporating it into our system
for generalizability. However, the simplicity of our output sewing
pattern structures allows enforcing symmetry in post-processing,
e.g., finding corresponding edges by relying on their 3D positions
and matching their lengths. Such a post-processing step may further
improve the quality of predicted sewing patterns.
On a higher level, an important direction would be to bring the

pipeline closer to in-the-wild data. NeuralTailor would improve its
applicability by building stronger resistance to noise in the input
point clouds, incorporating variations due to material properties,
body poses, or shapes, and fine features of sewing pattern design,
such as darts, pleats, or complex edge curves. On top of that, it would
be important to consider complex garment arrangements, such as
heavy occlusions due to garment layering, layering of fabric (e.g.,
ballroom skirts), accessories that change the standard draped shape
like belts, and utilization of complex materials like thick and bumpy
winter coats. Bringing these features would require an extension of
the currently available datasets. Other technologies, such as domain
transfer and adaptation, could also be worth exploring to reduce
the need for data labeled with ground truth sewing patterns.
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NEURALTAILOR: APPENDIX

A IMPLEMENTATION DETAILS
Architecture details. Each EdgeConv layer in both of our architec-
tures (Figures 3, 4) uses a small MPL with two hidden layers of 200
neurons each and an output layer of 150 neurons. The dynamic
graphs on each layer are constructed using 𝑘 = 5 nearest neighbors.
Per-point features are aggregated from edge features using max-
pooling. The final per-point feature has the size of 153 thanks to skip
connection with input point coordinates. Pattern LSTM (Sec. 5.2) cell
contains two layers with 250 elements per hidden layer and output of
the same size. Attention MLP (Sec. 6.1) consists of 3 layers with 153
neurons each and outputs vector of size 31 (number of panel classes)
or 32 for the experiment with additional class (Sec. 7.5.1). The panel
decoder’s LSTM cell contains three layers with 250 elements per
layer, outputting edge features of size 4 or size 8 if stitching infor-
mation is included. The maximum number of edges generated by
PanelLSTM is 14. The MLP for decoding the panel placement con-
sists of one linear layer mapping the 250-element panel encoding
to the vector of 7 elements representing concatenated rotation and
translation. The stitch information prediction model (Sec. 6.2) is
MLP with 3 layers, a hidden layer size of 200 and an output layer of
one neuron. For training this model, we sample 200 edge pairs that
are stitched and 200 that are not from each sewing pattern exam-
ple in the batch. All LSTM cells operate in a one-to-many manner.
We construct the input to LSTM as a sequence of duplicated input
encodings for the desired length of the output sequence.

Data pre-processing. The 3D garmentmodels from the dataset of [Ko-
rosteleva and Lee 2021b] have a clean mesh structure with visible
seam lines. We randomly sample point clouds from the surface of
these models. Each sample point cloud contains 2000 points. To
stabilize training, we additionally apply standardization (bringing
mean to zero and standard deviation to one) on input point clouds,
edge vectors, curvature coordinates, and normalization (ensuring
all values are between 0 and 1) on panel rotations and translations.

Training settings. We found it beneficial to use one-cyclic learning
rate scheduling, following recommendations of [Smith 2018], with
the maximum learning rate of 0.002. We train all models for 350
epochs with Adam optimizer [Kingma and Ba 2015] and batch size
of 30 with early stopping enabled for when the model does not
improve for consecutive 100 epochs. The training pipeline is imple-
mented with PyTorch [Paszke et al. 2019], PyG [Fey and Lenssen
2019], and Weights and Biases [Biewald 2020].

Training times. Training the pattern recovery model without stitch
tags takes about 36 hours on two NVIDIA Titan Xp GPUs. Training
of the stitch model follows a similar training setup and takes about
2 hours for inference of pattern shapes from the pattern recovery
model on the training set and 30 min of the actual training on a
single NVIDIA Titan XP GPU. The full baseline model with LSTM
backbone and stitch tag recovery takes 72 hours to train on two
NVIDIA Titan Xp GPUs.

B EXAMPLE PREDICTIONS ON THE TEST SET

Ground Truth Prediction Ground Truth Prediction Ground Truth Prediction

Fig. 11. Example sewing pattern predictions by NeuralTailor on garment types unseen during training. Stitches are not shown for clarity of visualization.
Predicted sewing patterns are draped on SMPL [Loper et al. 2015] woman body model using a stand-alone physics simulator.
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Ground Truth Prediction Ground Truth Prediction Ground Truth Prediction

Fig. 12. Example sewing pattern predictions by NeuralTailor for garment types available during training, one example of each type. Stitches are not shown for
clarity of visualization. Predicted sewing patterns are draped on SMPL [Loper et al. 2015] woman body model using a stand-alone physics simulator.

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.
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