MeshGraphNetRP: Improving Generalization of GNN-based
Cloth Simulation

Emmanuel Ian Libao Myeongjin Lee
KAIST KAIST
Daejeon, South Korea Daejeon, South Korea
iandlibao@kaist.ac.kr myeongjin.lee@kaist.ac.kr

Sumin Kim Sung-Hee Lee
KAIST KAIST
Daejeon, South Korea Daejeon, South Korea
gattonero@Xkaist.ac.kr sunghee.lee@kaist.ac.kr

Figure 1: Results of our model running on different trajectories and topologies.

ABSTRACT

Deep learning-based cloth simulation approaches have potential in
achieving real-time simulation of complex cloth by directly learning
a mapping from control input to resulting cloth movement, bypass-
ing the need for time-consuming dynamic solving and collision
processing. Recent advancements have demonstrated the effective-
ness of Graph Neural Networks (GNN) in learning cloth dynamics.
However, existing GNN-based models have limitations in predict-
ing scenarios involving complex cloth movement. To overcome
this limitation, we propose a novel GNN-based model that incorpo-
rates several components, including RNN-based state encoding and
physics-informed features. Our model significantly improves the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MIG °23, November 15-17, 2023, Rennes, France

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0393-5/23/11...$15.00
https://doi.org/10.1145/3623264.3624441

accuracy of cloth dynamics prediction in various scenarios, includ-
ing those with complex cloth movement driven by control handles.
Furthermore, our model demonstrates generalization capabilities
for cloth mesh topology and control handle configurations. We
validate the effectiveness of our approach through ablation studies
and comparisons with a baseline model.

CCS CONCEPTS

« Computing methodologies — Physical simulation; Neural
networks.

KEYWORDS

cloth simulation, neural networks, data-driven simulation

ACM Reference Format:

Emmanuel Ian Libao, Myeongjin Lee, Sumin Kim, and Sung-Hee Lee. 2023.
MeshGraphNetRP: Improving Generalization of GNN-based Cloth Simu-
lation. In ACM SIGGRAPH Conference on Motion, Interaction and Games
(MIG °23), November 15-17, 2023, Rennes, France. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3623264.3624441

https://doi.org/10.1145/3623264.3624441
https://doi.org/10.1145/3623264.3624441

MIG 23, November 15-17, 2023, Rennes, France

1 INTRODUCTION

Cloth simulation has been widely used in various industries, such as
video games, VR, animation, and fashion. As such, cloth simulation
has been an important issue in computer graphics research for
decades, but achieving realistic simulation of complex cloth in real-
time still remains challenging.

The most common method to generate realistic cloth deforma-
tion is physics-based simulation. While physics-based methods can
yield stable and high-quality cloth, they require substantial compu-
tational resources, making it challenging to interactively use them
for complex scenes. To address this issue, researchers have devel-
oped data-driven methods, which reproduce results efficiently for
the cloth learned during the training phase [3, 5, 9, 12, 15, 18, 25].
Many of these methods deal with garments, rather than cloth, pri-
marily focusing on the deformation caused by the body movement
and not considering various dynamics that occur in cloth beyond
the deformation caused by the body which makes the method lim-
mited to tight-fitting garments.

Recently, Graph Neural Networks (GNN) have been adopted
to learn dynamics of physical systems without being constrained
by the discretization topology of materials. MeshGraphNets [19]
have shown the capacity of GNN to predict dynamics in a broad
range of physical systems, including cloth, structural mechanics,
and aerodynamics. However, since they targeted on broadly-defined
dynamics, when the cloth is in control with a little more complexity,
such as when the cloth moves and rotates instead of being fixed, it
does not predict the dynamics well.

To address this, we introduce a novel GNN-based model that has
achieved improved learning of cloth dynamics. Starting from Mesh-
GraphNets as our baseline, we propose a number of components,
including RNN-based state encoding as well as physics-based fea-
tures and loss terms, to tailor the model more specifically to cloth
and extend the generalization capability of cloth movement. Hence
we dub our framework MeshGraphNetRP (i.e., with Recurrent en-
coding and Physical features).

The contributions of this paper can be summarized as follows:

o The introduction of physics-inspired features significantly
improves the accuracy and robustness of cloth simulation
for unseen challenging movements including rotation and
translation at different directions and speeds.

e We show that our RNN-based state encoding is critical for
reproducing the characteristic oscillatory behavior of cloth
before reaching the equilibrium.

e Our model can be generalized for arbitrary cloth topology
that has not been seen in training.

In addition, the paper introduces other components that con-
tributed to enhancing the accuracy and stability of cloth simulation
such as scheduled sampling and rotation-invariance with local co-
ordinates. Shown in Fig. 1 are the results of our model running on
different topologies such as square, wide, long and diamond-shaped
cloths moving on different trajectories like bouncing trajectory,
rotating upwards, and cloth handles moving separately from each
other.

Libao, et al.

2 RELATED WORK

Physics-based simulation is the most common way to create realistic
cloth in computer graphics. Since the seminal work of [23], various
physics-based approaches have been introduced that employ phys-
ical laws to generate accurate cloth deformation[7, 16, 26, 27, 29].
Simulating cloth involves complex computations for vertex interac-
tions that takes huge computational time.

To address this challenge, numerous learning-based approaches
[3, 5, 14, 18] have been developed. Their main emphasis lies on
capturing the effects of body movement on the garments rather
than the dynamics occurring beyond body-induced deformations.
Some approaches represent garments using parametric body mod-
els that use skinning weights on skeletons [14] or displacements
from the body [3, 18]. However, with their body-centric representa-
tions, these methods are inherently limited to handling tight-fitting
garments such as T-shirts and pants.

Other techniques have also been proposed to address loose-
fitting garments with complex deformations that do not closely
follow the body [10, 17, 28, 30, 31]. However, these methods may not
be robust when the garment undergoes highly dynamic scenarios
and may fail to produce stable deformations with high details.

Another avenue of research has aimed to predict physically plau-
sible and realistic cloth dynamics by incorporating physics-inspired
loss functions[4, 6, 9, 20]. The loss functions encompass stretching,
bending, gravity, and body-cloth collision potentials to minimize.
However, these methods are not fully exploiting the dynamics that
arise from the physical interaction between the cloth vertices in
the deformation procedure. Taking inspiration from these prior ap-
proaches, we include physical notions in our framework to maintain
the quality and stability of cloth deformation.

Meanwhile, MeshGraphNets [22] employed Graph Neural Net-
works (GNN) [21] and obtained plausible dynamic simulation re-
sults in a broad range of physical systems including cloth, through
message passing between vertices. MeshGraphNets demonstrated
its capability to accurately predict the overall dynamics caused by
various factors like wind effects or simple collisions on a stationary
cloth. However, when the cloth undergoes movements and rota-
tion instead of being stationary, the model was unable to output a
stable result. Since the advent of MeshGraphNets, there has been a
noticeable rise in the adoption of Graph Neural Networks (GNN)
for cloth simulations [4, 8, 13, 24, 30].

We build our model based on prior research demonstrating the
efficacy of graph neural networks (GNNs) and physics-informed
features for dynamic cloth simulation. Our model features a GNN
framework that enhances the generalizability to a range of mesh
topologies and motion. By incorporating physics-informed features
and leveraging the relational nature that occurs at a vertex level in
a cloth enhanced the model its ability to infer the true dynamics of
the cloth. Our approach has achieved unprecedented generalization
on dynamic cloth motions driven by constraint handles.

3 OVERVIEW

We develop a GNN-based framework for cloth simulation of planar
topologies that is stable for translation and rotation motions. An
overview of our framework is shown in Fig. 2. We first collect a
dataset of the trajectories of a square cloth by using a physical cloth

MeshGraphNetRP: Improving Generalization of GNN-based Cloth Simulation

Data Graph

MIG ’23, November 15-17, 2023, Rennes, France

t=—h
t=—h+1 -,

t=-1
t=0

Node Features

vi n; fi KE;

Square mesh moving in
different trajectories

Edge Features
di |ldill A=t i
(leiell = Nlag=1)) 6,

Training Runtime
; Processor P | W ¢ 1
Encoder | | Pl By || By |
Predicted mesh
Create
input graph
QObtain

[Scheduled Sampiing | Control Input

bl |
Loss Parameters \ \
C ace EKE [: ev ,C el ES c‘;:,;:!,—;,;,,, Initiol mesh

Figure 2: The overall framework of our model. We gather data using a physical cloth simulator and use these to make a graph
with rich physical features for our GNN-based model. We used scheduled sampling and physics-based loss. At runtime, we
would only need the trajectory of the control handles that could go anywhere in 3D space and the initial cloth mesh

simulator. From the dataset we train the model by constructing
a graph that includes relevant physical information of the cur-
rent mesh as node features and edge features. We use the Encode-
Process-Decode of MeshGraphNets as our main architecture. We
employ scheduled sampling in our training scheme to make the roll-
out results stable. After training, we can run the model by inputting
the initial state of the mesh and the trajectory of the handles (i.e.,
constraints on cloth nodes). The trained model can be generalized
for motions in unseen directions, speed and topology.

Dataset Preparation. We use Arcsim [16] as the cloth simulator for
obtaining our dataset. We simulated an irregular square mesh with
1024 vertices driven by two handles on the upper left and upper
right corners of the cloth. Our training dataset includes 16 trajecto-
ries containing 14 trajectories for translation and 2 trajectories for
rotation run at 60 fps. These trajectories are split into 42 sections
with a total of 6550 frames. Aside from the garment position, we
also save the mass of each cloth vertex and area of each face. We also
save the default rest state of the cloth. These data will be used for
computing the features in graph representation of the input which
will be detailed in Sec. 5. Appendix ?? details how we obtained our
training dataset.

4 ENCODE-PROCESS-DECODE
ARCHITECTURE

We follow the GNN-based Encode-Process-Decode architecture
(Fig. 2) introduced in [1]. Please refer to the paper for more details
and variations of this architecture. The first part of the network is
an encoder E that encodes the input graph Gjpp or in our case a
sequence of input graph {Gl.tn »
sage passing is applied in the processor P that contains N sequential
Pj (j=---N) blocks to get Gp. Finally the decoder D extracts the
desired dynamic information from G,. Like MeshGraphNets, the
final output of the graph is the acceleration of each node, which is
numerically integrated to get the position for next time step.

} into a latent representation G,. Mes-

Input Graph. We use a cloth M containing v vertices and e edges.
At time ¢ we represent the cloth as M* with positions {p!}i=1.0.
From the cloth states M? and M?~1 at current and previous time
steps, we extract relevant node features and edge features to make a
graph Ginp = (V, E) with V containing the node features {v;}=1:y
and E containing the edge set {(ek, rg, Sk) }k=1.c Where e contains
the edge features, and ry and s are the indices of receiver and
sender nodes representing the connectivity of the edges.

Encoder. We modified the MLP-based encoder of the original
MeshGraphNets to RNN architecture with GRU to consider the
historical movement of the cloth. The RNN encoder takes in a
sequence of input graph {Gitnp}(t = -h-h+1,---,-1,0) with
t = 0 representing the current time step. For our final model we
use h = 9 previous time steps for a total of 10 input sequence.

Processor. The processor has Pj(j = 1,---, N) blocks for nodes
and edges to pass their information to the local neighborhoods
within N steps. This message-passing among nodes and edges on
graphs is an important part for learning the dynamics. For our
model we used N = 15 as our message-passing steps.

Decoder. The decoder takes in the final graph output of the pro-
cessor, Gp, and decodes it to be the predicted acceleration for each
node a;. It contains an MLP node model €V and gets the node
features from Gp. We integrate a; twice to get the next time step
position p!*! = a; + 2p! — p!~1.

5 MODEL FRAMEWORK

As discussed in previous section, we represent cloth as a graph
containing node features and edge features to describe its current
state. We introduce several physics-based features and losses in
our model to enable a rich understanding on the current physical
state of the cloth for the model to learn cloth dynamics properly.
We also employed scheduled sampling and local transformations in
our model training to make the results stable throughout the whole
rollout.

MIG 23, November 15-17, 2023, Rennes, France

5.1 Node Features

We will first discuss the node features of the baseline MeshGraph-
Nets, velocity v; and node type n;, and then discuss new node
features we introduce in the model: external force f; and kinetic
energy KE;.

Velocity. The velocity at time ¢ is obtained for each node by
subtracting the positions of current mesh M? and the previous
mesh M*~ L.

t_ ot t-1
Vi =P —P;

Node Type. The nodes belonging to the handles serve as the
control input that drives the remaining nodes to motion. As such
we differentiate the handle nodes from the other nodes with the
node type n; represented with one-hot encoding.

External Force. The external force f; on each node is a 3D vector
that is computed at each time step. In this work, f; accounts for the
gravity and the wind drag. We used the saved values of the mass of
the vertices and area of the faces to compute the external force.

Kinetic Energy. The kinetic energy at time ¢ is obtained as K E;? =
%mi||vf| |2, where m; is the node’s mass.

5.2 Edge Features

We will first discuss the existing edge features from MeshGraphNets,
edge 3D vector and length, and then discuss the edge features we
introduce in our model: rest state edge 3D vector and length, stretch
and bending.

Edge 3D vector and length. We obtain the 3D vector of an edge k
by subtracting the current positions of the sender s and receiver
e nodes of the edge, di. = p;k - pﬁk, and its L% norm as the edge
length, ||di]|.

Rest state edge 3D vector and length. To represent the rest state of
the cloth, we include the edge 3D vector, d]rce“, and its length, ||d]r:35t||,
at rest state as an edge feature. The rest state of cloth is obtained
from physics simulation when the cloth is sagged with static handle
positions. The difference of this feature from MeshGraphNets is
that we use the 3D rest state of the cloth while the baseline method
used 2D UV-coordinates for this feature.

Stretch. Stretching force is a major factor for cloth dynamics that
acts to preserve the original length of the cloth. We simply model
the stretch feature of an edge as the difference of the current edge
length from its rest length, ||dy|| — ||d]rc“t||.

Bending. To help the model learn the cloth dynamics that gener-
ates bending force to restore the original angle between adjacent
faces, we add bending as an edge feature. The bending angle 6 of
an edge k is 0 when two adjacent faces are flat, and 7 when two
faces collapse on each other. Bending is set to zero when an edge is
connected to only one face.

5.3 Training Objectives

Our model is trained by minimizing the following loss functions
that include physics-based loss terms. We will first discuss the loss
of the baseline MeshGraphNets, acceleration loss, and then discuss

Libao, et al.

the new loss terms we introduce in the model: kinetic energy, edge
vector, edge length, and bending loss.

Acceleration Loss. The first term is the acceleration loss that
measures the difference between the target acceleration alt. and the
predicted acceleration a; of each node.

1 4
Lace =7) llai ~ il ()
i=1

Kinetic Energy Loss. We compute the target kinetic energy KE
using the target position and ground truth current position to get
the velocity. The predicted kinetic energy KE is obtained from the
predicted and current positions.

1+ —
Lxg =7) (KEi ~KE)®)
i=1

Edge Vector Loss. Using the target position and predicted position
we compute the target and predicted edge 3D vectors to compute
the edge vector loss as:

1v —t+1
Levzggnd,i“—dk I 3)

Edge Length Loss. We compute the norm of the target and pre-
dicted relative cloth position to get the length of an edge. We use
these edge length values to compute the loss as:

—it+1

1 e
Ler= -) (M= d I @
k=1

Bending Loss. We compute the target and predicted bending
using the target and predicted positions. We compute the loss as:
1y —
Lo=-) (0 - 6)* 5)
¢i=

The total loss function is the weighted sum of the above terms:
Liotal = Lace + AKELKE + AevLev + et Ler + A9 Ly (6)

We empirically set the loss weights AxE, Aeo, Ao, Ag to 1, 30, 30 and
0.5 to get the optimal learned model.

5.4 Model Training

At each timestep ¢ in the training data trajectory we get source
triplet positions X; = (x-1, xg, x1) where x.; corresponds to previ-
ous position, xg to the current position, and x; to the target position.
To make our framework rotation-invariant, we transform the po-
sitions X; at time ¢ to the local coordinate frame of xj. The local
coordinate frame is determined from the positions of the handles.
As such, a planar cloth with its normal facing in the x-axis direction
would be seen the same way by the model even if this cloth is
rotated along the vertical axis. Adding noise in the training data
is important in reducing rollout errors, which was done by adding
Gaussian noise with zero mean and fixed variance to both x; and
x0. We use the same training noise strategy as in GNS [11] and set
the noise magnitude hyperparameter to 0.3, which worked well for
our model.

To gently introduce rollout during training, we adapted sched-
uled sampling scheme [2], which was critical for successful training

MeshGraphNetRP: Improving Generalization of GNN-based Cloth Simulation

of our model. With a probability p we performed rollout for the
next frame of data, i.e., the predicted position was used for the
next time step. If p = 1 for an epoch, the training is performed
without any rollout, and if p = 0, the training is conducted in a
purely auto-regressive manner where the predicted output will be
the input for the next time step prediction. In our training, we set

p = 1 for the first set of epochs and linearly decreased p until p = 0.

In addition, we set the maximum number of rollout steps to 30, after
which the ground truth values for the previous and current time
steps replaced the predicted values to prevent excessive deviation
of the rollout simulation from the training data. Refer to Appendix
B in our supplementary file for details on the scheduled sampling
and the model configuration.

6 RESULTS AND EVALUATION

We evaluate the effectiveness of our model through a comparison
with MeshGraphNets and an ablation study. The results show that
our model produces stable results and can move in any direction
in 3D space even though the model is trained with only a sample
of directions. In contrast, MeshGraphNets fails to generate stable
rollouts. Furthermore, our model exhibits the ability to generalize
to new motion and mesh topologies (Fig. 1). Please refer to the
supplementary video for viewing our results.s

6.1 Comparison with MeshGraphNets

We compared our method with MeshGraphNets on our test dataset
containing trajectories of a square cloth moving in directions not
seen on training (Fig. 3).

le-3 le-2 le-1
(@ . 6 2
w 3 1.5
2 4 I MeshGraphNets
-
5 2 1 - MeshGraphNets +
e 2 05 Scheduled Sampling
g X
= B ours
0 0 0
One-step 50-step Whole
Rollout Rollout Rollout
(b) 1 (C) le-2 w lel
e-1 6 9 3
w4 a =
£ 2 -
3 x 4 5 2
e 2 5 c
S 2 @
2 g2 21
3 g)
£0 = -
0 “ oo
0 500 1000
Whole Rollout

Trajectory Frame

Figure 3: Evaluation of our model compared with MeshGraph-
Nets. (a) Position RMSE at different rollout steps (b) Position
RMSE at each frame on a test trajectory (c) A closer compari-
son between our model and MeshGraphNets with scheduled
sampling

For one-step rollouts, baseline MeshGraphNets works better than
our model but MeshGraphNets fails to maintain stable results with
arapid increase in RMSE as the rollout steps increase. At whole roll-
outs, the RMSE of baseline MeshGraphNets is significantly higher
than our model. It could also be seen in Fig. 3b how the results of

MIG ’23, November 15-17, 2023, Rennes, France

baseline MeshGraphNets destabilizes in the middle of the rollout
where the cloth is in motion.

We applied scheduled sampling on the baseline MeshGraphNets
as one of our comparisons in the evaluation. With scheduled sam-
pling the results of the model become more stable. We see at Fig. 3¢
a closer comparison between this model and our model. Position
RMSE is lower in our model and we could also see a clearer dif-
ference at the edge length RMSE which we observed is a sensitive
metric for measuring stability.

We observe that instabilities commonly arise from the areas of
the cloth near the handle wherein the neighboring nodes of the
handle cannot keep up with the cloth in motion. Figure 4 shows
the result of the models on a test dataset at the same frame.

(a) b (b)

Figure 4: Frame result for a test trajectory moving in (0,1,-1)
segment. (a) Baseline MeshGraphNets (b) MeshGraphNets +
scheduled sampling (c) Our model (d) Ground truth.

6.2 Ablation Study

We first perform ablations studies by looking at the effect of the
RNN encoder on the model. Our final model uses an RNN encoder
that takes in an input sequence of length 10. We compare it with
a model that uses a simple MLP encoder and a model that uses
an RNN encoder of length 5. Shown in Fig. 5 are the results. Two
different epochs were compared to also show the effect of scheduled
sampling with the encoders. At 300th epoch, the model starts to
operate in full auto-regressive manner.

The model that uses MLP encoder actually begin to worsen
its performance starting from the 300th epoch. It fails to learn
the important relationship of the previous inputs to the output
acceleration of the cloth.

Increasing the input sequence length to the RNN improved the
overall performance of the model. From the figure, we see that
at 300th epoch the performance of the RNN encoders are similar
with the MLP encoder. But with the next epochs of auto-regression

MIG 23, November 15-17, 2023, Rennes, France

le-2 -
(@ ¢ - (b) let
5 w 27
g g
2 4 15 MLP
S i
2 37 § 1] I rNNs
o
& 21 5 I RNN-10 (Ours)
o 05
1 4
0 - 0 -
300t 800t 300t 800t
epoch epoch epoch epoch

Figure 5: Comparison of the MLP and RNN encoders. (a)
Position RMSE (b) Edge Length RMSE.

Table 1: Features and Loss Ablations.

Position | Edge Length
Model RMSE RMSE
X102 x10~2

w/o external force feature 3.1 4.463
w/o 3d rest state feature (use 2d rest state) 3.321 4.361
w/o stretch feature 3.373 4.685
w/o edge vector loss 3.289 5.02
w/o edge length loss 3.329 6.508
w/o KE feature & loss 3.22 4.169
w/o bending feature & loss 3.255 4.51
w/o all added features and loss (exter- 3.365 10.5
nal force, 3d rest state, stretch, KE and
bending features, and edge vector, edge
length, KE and bending losses)
Ours 3.167 4.197

training, the RNN encoders continued to improve with the RNN-10
having more improvement than RNN-5.

Next are the ablation studies done by removing the physical
features and loss we introduced in our model one at a time and
evaluating both position RMSE and edge length RMSE. Shown in
Table 1 are the results wherein our model performs better than the
models without the physical features and loss. Especially we can
see from the table the huge gap between the edge length RMSE of
the model without the new features and loss we introduced and
our model. Looking at the rollout results of this model without the
new features and loss, the elongation near the handles is apparent
as well as the shaking when the cloth is supposedly in rest state.

6.3 Runtime Performance

Our model with an RNN sequence length of 10 demonstrates effi-
cient performance achieving processing time of 37 ms per frame on
an RTX 3080 for 1024-vertices mesh. Reducing the RNN sequence
length to 5 results in a slightly better performance of 26 ms per
frame. The original MeshGraphNets configuration which showed
unstable rollouts for most motions runs at 12 ms per frame. In
contrast, Arcsim, which exclusively operates on CPU and was eval-
uated on Ryzen 5 5600x, exhibits a signifiantly slower performance
of 404 ms per frame.

6.4 Generalization and Limitations

Our method generalizes well beyond the motion trajectories seen by
training in regards of direction of translation, curvature of rotation,

Libao, et al.

and motion speed producing stable results throughout the rollout.
We could also run motions where the cloth translates and rotates at
the same time. We believe this is achieved because of the physics-
based features we introduce in our model.

In addition, our method could simulate cloth with other mesh
topology with different mesh shape and size or different number
of handles. This generalizability is a strength of using GNN as our
main architecture.

Our model can generalize to motion speeds less than that of the
speed of training trajectories however our model fails on trajecto-
ries with higher speeds. The rollout becomes unstable as the cloth
cannot catch up with the movement of the handles although the
cloth could recover to its stable result after the handles stop.

Our model can also generalize with handles moving separately
from each other as long as the distance between the handles is kept
at a certain range. Otherwise, when the handles are too far from
each other, it will fail to show the stretched rest state. In addition,
if the handles are too close, self-collision between the cloth vertices
may occur.

One limitation in our work is the assumption of no collisions
with external objects. We leave future work for representing col-
lision for the model. One possible way is through the solution of
MeshGraphNets with the representation of the external object as
another graph and making connecting edges between the cloth
graph when the external object is close to the cloth which could
be computationally inefficient. Another limitation of our work is
the assumption that the rest state of a given cloth is the same. This
is not the case when we have the four corners of a square cloth
as control handle and manipulate the bottom corners to bring the
cloth upwards. We believe that a proper representation of the rest
state of the cloth is essential in the model and future work is left
for better representation of this rest state.

7 CONCLUSION

We propose a novel GNN-based cloth simulation framework that
leverages physics-informed features in the networks. Our frame-
work accurately predicts cloth dynamics in highly generalized mo-
tions that are not seen during training, while also generalizing for
arbitrary cloth mesh topology and control handle.

Our results demonstrate the effectiveness of deep learning ap-
proaches in reproducing cloth motions for a wide range of scenarios.
However, we acknowledge that more complex cloth motions, such
as tearing or colliding with complex objects, may present a chal-
lenge for deep learning-based methods. Exploring these challenging
scenarios would contribute to advancing both deep learning archi-
tectures and cloth simulation studies, ultimately leading to more
robust and versatile cloth simulation frameworks.

ACKNOWLEDGMENTS

This work was supported by NCSoft and National Research Council
of Science & Technology, Korea [CRC 21011].

REFERENCES

[1] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin
Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria

MeshGraphNetRP: Improving Generalization of GNN-based Cloth Simulation

[10]

[11]

[12

[13]

[14]

(15

[16]

[17]

(18]

[19

[20

[21

[22

[23]

[24]

[25

Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt
Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. 2018. Relational inductive
biases, deep learning, and graph networks. arXiv:1806.01261 [cs.LG]

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. 2015. Scheduled
Sampling for Sequence Prediction with Recurrent Neural Networks (NIPS’15).
MIT Press, Cambridge, MA, USA, 1171-1179.

Hugo Bertiche, Meysam Madadi, and Sergio Escalera. 2020. CLOTH3D: Clothed
3D Humans. arXiv:1912.02792 [cs.CV]

Hugo Bertiche, Meysam Madadi, and Sergio Escalera. 2020. PBNS: physically
based neural simulator for unsupervised garment pose space deformation. arXiv
preprint arXiv:2012.11310 (2020).

Hugo Bertiche, Meysam Madadi, and Sergio Escalera. 2021. PBNS: Physically
Based Neural Simulator for Unsupervised Garment Pose Space Deformation.
arXiv:2012.11310 [cs.CV]

Hugo Bertiche, Meysam Madadi, and Sergio Escalera. 2022. Neural Cloth
Simulation. ACM Transactions on Graphics 41, 6 (nov 2022), 1-14. https:
//doi.org/10.1145/3550454.3555491

Robert Bridson, Sebastian Marino, and Ronald Fedkiw. 2005. Simulation of
clothing with folds and wrinkles. In ACM SIGGRAPH 2005 Courses. 3—es.

Artur Grigorev, Bernhard Thomaszewski, Michael] Black, and Otmar Hilliges.
2022. HOOD: Hierarchical Graphs for Generalized Modelling of Clothing Dy-
namics. arXiv preprint arXiv:2212.07242 (2022).

Erhan Gundogdu, Victor Constantin, Amrollah Seifoddini, Minh Dang, Mathieu
Salzmann, and Pascal Fua. 2019. Garnet: A two-stream network for fast and
accurate 3d cloth draping. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 8739-8748.

Doyub Kim, Woojong Koh, Rahul Narain, Kayvon Fatahalian, Adrien Treuille,
and James F. O’Brien. 2013. Near-Exhaustive Precomputation of Secondary
Cloth Effects. ACM Trans. Graph. 32, 4, Article 87 (jul 2013), 8 pages. https:
//doi.org/10.1145/2461912.2462020

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. arXiv:1609.02907 [cs.LG]

Zorah Lahner, Daniel Cremers, and Tony Tung. 2018. Deepwrinkles: Accurate
and realistic clothing modeling. In Proceedings of the European conference on
computer vision (ECCV). 667-684.

Alberta Longhini, Marco Moletta, Alfredo Reichlin, Michael C Welle, David Held,
Zackory Erickson, and Danica Kragic. 2022. EDO-Net: Learning Elastic Properties
of Deformable Objects from Graph Dynamics. arXiv preprint arXiv:2209.08996
(2022).

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and
Michael J. Black. 2015. SMPL: A Skinned Multi-Person Linear Model. ACM
Trans. Graph. 34, 6, Article 248 (nov 2015), 16 pages. https://doi.org/10.1145/
2816795.2818013

E. Miguel, D. Bradley, B. Thomaszewski, B. Bickel, W. Matusik, M. A. Otaduy,
and S. Marschner. 2012. Data-Driven Estimation of Cloth Simulation Models.
Comput. Graph. Forum 31, 2pt2 (may 2012), 519-528.

Rahul Narain, Armin Samii, and James F O’brien. 2012. Adaptive anisotropic
remeshing for cloth simulation. ACM transactions on graphics (TOG) 31, 6 (2012),
1-10.

Xiaoyu Pan, Jiaming Mai, Xinwei Jiang, Dongxue Tang, Jingxiang Li, Tianjia Shao,
Kun Zhou, Xiaogang Jin, and Dinesh Manocha. 2022. Predicting Loose-Fitting
Garment Deformations Using Bone-Driven Motion Networks. In Special Interest
Group on Computer Graphics and Interactive Techniques Conference Proceedings.
ACM. https://doi.org/10.1145/3528233.3530709

Chaitanya Patel, Zhouyingcheng Liao, and Gerard Pons-Moll. 2020. TailorNet:
Predicting Clothing in 3D as a Function of Human Pose, Shape and Garment
Style. arXiv:2003.04583 [cs.CV]

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W.
Battaglia. 2021. Learning Mesh-Based Simulation with Graph Networks.
arXiv:2010.03409 [cs.LG]

Igor Santesteban, Miguel A. Otaduy, and Dan Casas. 2022. SNUG: Self-Supervised
Neural Dynamic Garments. arXiv:2204.02219 [cs.CV]

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61-80.

An Ping Song, Xin Yi Di, Xiao Kang Xu, and Zi Heng Song. 2020. MeshGraphNet:
An effective 3D polygon mesh recognition With topology reconstruction. IEEE
Access 8 (2020), 205181-205189.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically
Deformable Models. In Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH °87). Association for Computing
Machinery, New York, NY, USA, 205-214. https://doi.org/10.1145/37401.37427

Lokender Tiwari and Brojeshwar Bhowmick. 2023. GarSim: Particle Based Neu-
ral Garment Simulator. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision. 4472-4481.

Yunjin Tong, Shiying Xiong, Xingzhe He, Guanghan Pan, and Bo Zhu. 2021.
Symplectic neural networks in Taylor series form for Hamiltonian systems. 7.
Comput. Phys. 437 (2021), 110325.

[26

[27

[28

[30

(31

MIG ’23, November 15-17, 2023, Rennes, France

Pascal Volino, Nadia Magnenat-Thalmann, and Francois Faure. 2009. A sim-
ple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM
Transactions on Graphics 28, 4 (2009), Article-No.

Huamin Wang, James F O’Brien, and Ravi Ramamoorthi. 2011. Data-driven elastic
models for cloth: modeling and measurement. ACM transactions on graphics
(TOG) 30, 4 (2011), 1-12.

Tuanfeng Y. Wang, Tianjia Shao, Kai Fu, and Niloy J. Mitra. 2019. Learning an
Intrinsic Garment Space for Interactive Authoring of Garment Animation. ACM
Trans. Graph. 38, 6, Article 220 (nov 2019), 12 pages. https://doi.org/10.1145/
3355089.3356512

Martin Wicke, Daniel Ritchie, Bryan M Klingner, Sebastian Burke, Jonathan R
Shewchuk, and James F O’Brien. 2010. Dynamic local remeshing for elastoplastic
simulation. ACM Transactions on graphics (TOG) 29, 4 (2010), 1-11.

Meng Zhang, Duygu Ceylan, and Niloy J Mitra. 2022. Motion guided deep
dynamic 3d garments. ACM Transactions on Graphics (TOG) 41, 6 (2022), 1-12.
Meng Zhang, Tuanfeng Wang, Duygu Ceylan, and Niloy J. Mitra.
2021. Deep Detail Enhancement for Any Garment. Computer Graph-
ics Forum 40, 2 (2021), 399-411. https://doi.org/10.1111/cgf.142642
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142642

https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1912.02792
https://arxiv.org/abs/2012.11310
https://doi.org/10.1145/3550454.3555491
https://doi.org/10.1145/3550454.3555491
https://doi.org/10.1145/2461912.2462020
https://doi.org/10.1145/2461912.2462020
https://arxiv.org/abs/1609.02907
https://doi.org/10.1145/2816795.2818013
https://doi.org/10.1145/2816795.2818013
https://doi.org/10.1145/3528233.3530709
https://arxiv.org/abs/2003.04583
https://arxiv.org/abs/2010.03409
https://arxiv.org/abs/2204.02219
https://doi.org/10.1145/37401.37427
https://doi.org/10.1145/3355089.3356512
https://doi.org/10.1145/3355089.3356512
https://doi.org/10.1111/cgf.142642
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142642

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Encode-Process-Decode Architecture
	5 Model Framework
	5.1 Node Features
	5.2 Edge Features
	5.3 Training Objectives
	5.4 Model Training

	6 Results and Evaluation
	6.1 Comparison with MeshGraphNets
	6.2 Ablation Study
	6.3 Runtime Performance
	6.4 Generalization and Limitations

	7 Conclusion
	Acknowledgments
	References

